Effect of diet on pathogen performance in the microbiome

Ronan Strain , Catherine Stanton , R. Paul Ross

Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (2) : 13

PDF
Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (2) :13 DOI: 10.20517/mrr.2021.10
Review

Effect of diet on pathogen performance in the microbiome

Author information +
History +
PDF

Abstract

Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.

Keywords

Colonisation resistance / gut microbiota / pathogen / diet / infection

Cite this article

Download citation ▾
Ronan Strain, Catherine Stanton, R. Paul Ross. Effect of diet on pathogen performance in the microbiome. Microbiome Research Reports, 2022, 1(2): 13 DOI:10.20517/mrr.2021.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li J,Cai X.MetaHIT ConsortiumAn integrated catalog of reference genes in the human gut microbiome.Nat Biotechnol2014;32:834-41

[2]

El Kaoutari A,Gordon JI,Henrissat B.The abundance and variety of carbohydrate-active enzymes in the human gut microbiota.Nat Rev Microbiol2013;11:497-504

[3]

Sonnenburg ED.Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates.Cell Metab2014;20:779-86 PMCID:PMC4896489

[4]

Wu GD,Hoffmann C.Linking long-term dietary patterns with gut microbial enterotypes.Science2011;334:105-8 PMCID:PMC3368382

[5]

David LA,Carmody RN.Diet rapidly and reproducibly alters the human gut microbiome.Nature2014;505:559-63 PMCID:PMC3957428

[6]

Sender R,Milo R.Revised estimates for the number of human and bacteria cells in the body.PLoS Biol2016;14:e1002533 PMCID:PMC4991899

[7]

Faith JJ,Rey FE.Predicting a human gut microbiota’s response to diet in gnotobiotic mice.Science2011;333:101-4 PMCID:PMC3303606

[8]

Wu M,Rodionov DA.Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides.Science2015;350:aac5992 PMCID:PMC4608238

[9]

Kearney SM,Erdman SE.Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal.Cell Rep2018;24:1842-51 PMCID:PMC6724203

[10]

Stecher B,Hardt WD.‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution.Nat Rev Microbiol2013;11:277-84

[11]

Stecher B,Walker AW.Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota.PLoS Biol2007;5:2177-89 PMCID:PMC1951780

[12]

Fabich AJ,Chowdhury FZ.Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine.Infect Immun2008;76:1143-52 PMCID:PMC2258830

[13]

Turnbaugh PJ,Faith JJ,Knight R.The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.Sci Transl Med2009;1:6ra14 PMCID:PMC2894525

[14]

Kollmann TR,Montgomery RR.Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly.Immunity2012;37:771-83 PMCID:PMC3538030

[15]

Kamada N,Chen GY.Role of the gut microbiota in immunity and inflammatory disease.Nat Rev Immunol2013;13:321-35

[16]

Dominguez-Bello MG,Contreras M.Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.Proc Natl Acad Sci U S A2010;107:11971-5 PMCID:PMC2900693

[17]

Solís G,Fernández N,Gueimonde M.Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut.Anaerobe2010;16:307-10

[18]

Sela DA.Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.Trends Microbiol2010;18:298-307 PMCID:PMC2902656

[19]

Yu ZT,Kling DE.The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota.Glycobiology2013;23:169-77 PMCID:PMC3531294

[20]

Bridgman SL,Field CJ.Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: differences in relative versus absolute concentrations.Front Nutr2017;4:11 PMCID:PMC5385454

[21]

Louis P,Flint HJ.The gut microbiota, bacterial metabolites and colorectal cancer.Nat Rev Microbiol2014;12:661-72

[22]

Lara-Villoslada F,Sierra S,Boza J.Beneficial effects of probiotic bacteria isolated from breast milk.Br J Nutr2007;98 Suppl 1:S96-100

[23]

Ruiz L,Ruas-Madiedo P,Margolles A.Bifidobacteria and their molecular communication with the immune system.Front Microbiol2017;8:2345 PMCID:PMC5722804

[24]

Caballero-Flores G,Zeng MY.Maternal immunization confers protection to the offspring against an attaching and effacing pathogen through delivery of IgG in breast milk.Cell Host Microbe2019;25:313-23.e4 PMCID:PMC6375740

[25]

Patel RM,Walsh MC.Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research NetworkCauses and timing of death in extremely premature infants from 2000 through 2011.N Engl J Med2015;372:331-40 PMCID:PMC4349362

[26]

Underwood MA,Lebrilla CB.Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut.Pediatr Res2015;77:229-35 PMCID:PMC4350908

[27]

Colliou N,Sahay B.Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation.J Clin Invest2017;127:3970-86 PMCID:PMC5663347

[28]

Colliou N,Gong M.Regulation of Th17 cells by P. UF1 against systemic Listeria monocytogenes infection.Gut Microbes2018;9:279-87 PMCID:PMC6219594

[29]

Marcobal A,Sonnenburg ED.Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.Cell Host Microbe2011;10:507-14 PMCID:PMC3227561

[30]

Jakobsson HE,Jenmalm MC.Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section.Gut2014;63:559-66

[31]

Round JL.Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.Proc Natl Acad Sci U S A2010;107:12204-9 PMCID:PMC2901479

[32]

Telesford KM,Ochoa-Reparaz J.A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function.Gut Microbes2015;6:234-42 PMCID:PMC4615798

[33]

Vatanen T,d’Hennezel E.DIABIMMUNE Study GroupVariation in microbiome LPS immunogenicity contributes to autoimmunity in humans.Cell2016;165:842-53 PMCID:PMC4950857

[34]

Macfarlane S.Regulation of short-chain fatty acid production.Proc Nutr Soc2003;62:67-72

[35]

Mariño E,Mcleod KH.Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes.Nat Immunol2017;18:552-62

[36]

Atarashi K,Oshima K.Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.Nature2013;500:232-6

[37]

Kim YG,Seo SU.Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens.Science2017;356:315-9 PMCID:PMC6082366

[38]

Davis MY,Brannan LE,Boone JH.Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk.Microbiome2016;4:53 PMCID:PMC5055705

[39]

Burkitt DP,Painter NS.Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease.Lancet1972;2:1408-12

[40]

Schnorr SL,Rampelli S.Gut microbiome of the Hadza hunter-gatherers.Nat Commun2014;5:3654 PMCID:PMC3996546

[41]

Sonnenburg ED,Tikhonov M,Wingreen NS.Diet-induced extinctions in the gut microbiota compound over generations.Nature2016;529:212-5 PMCID:PMC4850918

[42]

Fletcher SM,Ellis JT.Prevalence of gastrointestinal pathogens in developed and developing countries: systematic review and meta-analysis.J Public Health Res2013;2:42-53 PMCID:PMC4140330

[43]

De Filippo C,Di Paola M.Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.Proc Natl Acad Sci U S A2010;107:14691-6 PMCID:PMC2930426

[44]

Kamada N,Sham HP.Regulated virulence controls the ability of a pathogen to compete with the gut microbiota.Science2012;336:1325-9 PMCID:PMC3439148

[45]

Antonopoulos DA,Morrison HG,Sogin ML.Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation.Infect Immun2009;77:2367-75 PMCID:PMC2687343

[46]

Morowitz MJ,Pang D.Dietary supplementation with nonfermentable fiber alters the gut microbiota and confers protection in murine models of sepsis.Crit Care Med2017;45:e516-23 PMCID:PMC5392159

[47]

Luo Y,Li H.Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice.Front Microbiol2017;8:966 PMCID:PMC5447771

[48]

Cook SI.Review article: short chain fatty acids in health and disease.Aliment Pharmacol Ther1998;12:499-507

[49]

Kinnunen M,Proctor C.A conceptual framework for invasion in microbial communities.ISME J2016;10:2773-5 PMCID:PMC5148196

[50]

Hedemann MS,Bach Knudsen KE.The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta.Br J Nutr2009;102:117-25

[51]

Desai MS,Koropatkin NM.A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility.Cell2016;167:1339-53.e21 PMCID:PMC5131798

[52]

Ottman N,Suarez-Diez M.Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle.Appl Environ Microbiol2017;83:e01014-17 PMCID:PMC5583483

[53]

Belzer C.Microbes inside--from diversity to function: the case of Akkermansia.ISME J2012;6:1449-58 PMCID:PMC3401025

[54]

Ottman N,Reunanen J.Characterization of outer membrane proteome of Akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine.Front Microbiol2016;7:1157 PMCID:PMC4960237

[55]

Johansson ME.Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins.PLoS One2012;7:e41009 PMCID:PMC3398881

[56]

Martens EC,Gordon JI.Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont.Cell Host Microbe2008;4:447-57 PMCID:PMC2605320

[57]

Wrzosek L,Noordine ML.Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent.BMC Biol2013;11:61 PMCID:PMC3673873

[58]

Lopez-Siles M,Aldeguer X.Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects.Front Cell Infect Microbiol2018;8:281 PMCID:PMC6137959

[59]

Ng KM,Higginbottom SK.Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens.Nature2013;502:96-9 PMCID:PMC3825626

[60]

Everard A,Derrien M.Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice.Diabetes2011;60:2775-86 PMCID:PMC3198091

[61]

Bishara J,Mograbi J.Obesity as a risk factor for Clostridium difficile infection.Clin Infect Dis2013;57:489-93

[62]

Hryckowian AJ,Smits SA.Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model.Nat Microbiol2018;3:662-9 PMCID:PMC6126909

[63]

Cummings JH,Branch WJ,Macfarlane GT.Short chain fatty acids in human large intestine, portal, hepatic and venous blood.Gut1987;28:1221-7 PMCID:PMC1433442

[64]

Tedelind S,Kjerrulf M.Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease.World J Gastroenterol2007;13:2826-32 PMCID:PMC4395634

[65]

Carter PB.The route of enteric infection in normal mice.J Exp Med1974;139:1189-203 PMCID:PMC2139651

[66]

Huang Y,Garner CD,Altier C.Formate acts as a diffusible signal to induce Salmonella invasion.J Bacteriol2008;190:4233-41 PMCID:PMC2446767

[67]

Garner CD,Wagner B.Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection.Infect Immun2009;77:2691-702 PMCID:PMC2708583

[68]

Lawhon SD,Suyemoto M.Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA.Mol Microbiol2002;46:1451-64

[69]

Jacobson A,Rajendram M.A gut commensal-produced metabolite mediates colonization resistance to salmonella infection.Cell Host Microbe2018;24:296-307.e7 PMCID:PMC6223613

[70]

Croxen MA,Scholz R,Wlodarska M.Recent advances in understanding enteric pathogenic Escherichia coli.Clin Microbiol Rev2013;26:822-80 PMCID:PMC3811233

[71]

Shin R,Morishita Y.Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7.J Med Microbiol2002;51:201-6

[72]

Cherrington CA,Pearson GR.Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation.J Appl Bacteriol1991;70:161-5

[73]

Lackraj T,Tran SL.Differential modulation of flagella expression in enterohaemorrhagic Escherichia coli O157: H7 by intestinal short-chain fatty acid mixes.Microbiology (Reading)2016;162:1761-72

[74]

Herold S,Srimanote P.Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli.Microbiology (Reading)2009;155:3554-63

[75]

Tobe T,Sugimoto N.Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli.Infect Immun2011;79:1016-24 PMCID:PMC3067497

[76]

Fukuda S,Hase K.Bifidobacteria can protect from enteropathogenic infection through production of acetate.Nature2011;469:543-7

[77]

Fukuda S,Taylor TD,Hattori M.Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters.Gut Microbes2012;3:449-54

[78]

Luethy PM,Ribardo DA,Parker CT.Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence.mBio2017;8:e00407-17 PMCID:PMC5424204

[79]

Rolfe RD.Role of volatile fatty acids in colonization resistance to Clostridium difficile.Infect Immun1984;45:185-91 PMCID:PMC263298

[80]

Lyras D,Howarth PM.Toxin B is essential for virulence of Clostridium difficile.Nature2009;458:1176-9 PMCID:PMC2679968

[81]

van Nood E,Nieuwdorp M.Duodenal infusion of donor feces for recurrent Clostridium difficile.N Engl J Med2013;368:407-15

[82]

Hopkins MJ.Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro.Appl Environ Microbiol2003;69:1920-7 PMCID:PMC154806

[83]

Guilloteau P,Eeckhaut V,Zabielski R.From the gut to the peripheral tissues: the multiple effects of butyrate.Nutr Res Rev2010;23:366-84

[84]

Spiller GA,Hill RA,Nassar JJ.Effect of purified cellulose, pectin, and a low-residue diet on fecal volatile fatty acids, transit time, and fecal weight in humans.Am J Clin Nutr1980;33:754-9

[85]

Willemsen LE,van Deventer SJ.Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts.Gut2003;52:1442-7 PMCID:PMC1773837

[86]

Duncan SH,Stewart CS,Flint HJ.Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine.Appl Environ Microbiol2002;68:5186-90 PMCID:PMC126392

[87]

Nakanishi N,Kuhara S,Sugimoto N.Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli.Microbiology (Reading)2009;155:521-30

[88]

Zumbrun SD,Smith MA,Merrell DS.Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease.Proc Natl Acad Sci U S A2013;110:E2126-33 PMCID:PMC3677460

[89]

Ferrer-Picón E,Corraliza AM.Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease.Inflamm Bowel Dis2020;26:43-55 PMCID:PMC6905302

[90]

Gantois I,Pasmans F.Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression.Appl Environ Microbiol2006;72:946-9 PMCID:PMC1352287

[91]

Hung CC,Slauch JM.The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD.Mol Microbiol2013;87:1045-60 PMCID:PMC3581741

[92]

Rivera-Chávez F,Faber F.Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella.Cell Host Microbe2016;19:443-54 PMCID:PMC4832419

[93]

Byndloss MX,Rivera-Chávez F.Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion.Science2017;357:570-5 PMCID:PMC5642957

[94]

Gillis CC,Spiga L.Dysbiosis-associated change in host metabolism generates lactate to support salmonella growth.Cell Host Microbe2018;23:54-64.e6 PMCID:PMC5764812

[95]

Bronner DN,Olsan EE.Genetic ablation of butyrate utilization attenuates gastrointestinal salmonella disease.Cell Host Microbe2018;23:266-73.e4 PMCID:PMC6345573

[96]

Wu J,Borton MA.Salmonella-mediated inflammation eliminates competitors for fructose-asparagine in the gut.Infect Immun2018;86:e00945-17 PMCID:PMC5913863

[97]

Anand S,Mande SS.Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens.Front Microbiol2016;7:1945 PMCID:PMC5133246

[98]

Corpet DE,Zhang XM.Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein.Nutr Cancer1995;23:271-81 PMCID:PMC2518970

[99]

Fukugaiti MH,Fernandes MR,Nakano V.High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients.Braz J Microbiol2015;46:1135-40 PMCID:PMC4704648

[100]

Liu L,Zhang X.Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum.Clin Gastroenterol Hepatol2018;16:1622-31.e3 PMCID:PMC6151288

[101]

Gibson GR,Sanders ME.Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat Rev Gastroenterol Hepatol2017;14:491-502

[102]

Rastall RA.Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health.Curr Opin Biotechnol2015;32:42-6

[103]

Schouler C,Chouikha I,Gilot P.A genomic island of an extraintestinal pathogenic Escherichia coli Strain enables the metabolism of fructooligosaccharides, which improves intestinal colonization.J Bacteriol2009;191:388-93 PMCID:PMC2612441

[104]

Baurhoo B,Zhao X.Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides.Poult Sci2007;86:2509-16

[105]

Azcarate-Peril MA,Cadenas MB.An attenuated salmonella enterica serovar typhimurium strain and galacto-oligosaccharides accelerate clearance of salmonella infections in poultry through modifications to the gut microbiome.Appl Environ Microbiol2018;84:e02526-17 PMCID:PMC5812947

[106]

Agunos A,Yokomizo F.Effect of dietary beta1-4 mannobiose in the prevention of Salmonella enteritidis infection in broilers.Br Poult Sci2007;48:331-41

[107]

Zou J,Singh V.Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health.Cell Host Microbe2018;23:41-53.e4 PMCID:PMC6005180

[108]

Schroeder BO,Ståhlman M.Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration.Cell Host Microbe2018;23:27-40.e7 PMCID:PMC5764785

[109]

Miles JP,Kumar MV.Supplementation of low- and high-fat diets with fermentable fiber exacerbates severity of DSS-induced acute colitis.Inflamm Bowel Dis2017;23:1133-43 PMCID:PMC5497995

[110]

Ten Bruggencate SJ,Lettink-Wissink ML.Dietary fructooligosaccharides increase intestinal permeability in rats.J Nutr2005;135:837-42

[111]

Gänzle MG.Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose.Int Dairy J2012;22:116-22

[112]

Shoaf K,Armstrong GD.Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells.Infect Immun2006;74:6920-8 PMCID:PMC1698067

[113]

Kittana H,Bindels LB.Galactooligosaccharide supplementation provides protection against Citrobacter rodentium-induced colitis without limiting pathogen burden.Microbiology (Reading)2018;164:154-62 PMCID:PMC5884961

[114]

Monteagudo-Mera A,Jobin C,Bruno-Barcena JM.High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome.Benef Microbes2016;7:247-64 PMCID:PMC4974821

[115]

Chiang JY.Bile acids: regulation of synthesis.J Lipid Res2009;50:1955-66 PMCID:PMC2739756

[116]

Ridlon JM,Hylemon PB.Bile salt biotransformations by human intestinal bacteria.J Lipid Res2006;47:241-59

[117]

Staley C,Khoruts A.Interaction of gut microbiota with bile acid metabolism and its influence on disease states.Appl Microbiol Biotechnol2017;101:47-64 PMCID:PMC5203956

[118]

Stacy A,McCulloch JA.Infection trains the host for microbiota-enhanced resistance to pathogens.Cell2021;184:615-27.e17 PMCID:PMC8786454

[119]

Francis MB,Shrestha R.Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection.PLoS Pathog2013;9:e1003356 PMCID:PMC3649964

[120]

Theriot CM,Carlson PE Jr.Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection.Nat Commun2014;5:3114 PMCID:PMC3950275

[121]

Fletcher JR,Parsons RJ.Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota.Nat Commun2021;12:462 PMCID:PMC7815924

[122]

Buffie CG,Stein RR.Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.Nature2015;517:205-8 PMCID:PMC4354891

[123]

Mullish BH,Pechlivanis A.Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection.Gut2019;68:1791-800 PMCID:PMC6839797

[124]

Wotzka SY,Maier L.Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice.Nat Microbiol2019;4:2164-74 PMCID:PMC6881180

[125]

Litvak Y,Nguyen H.Commensal enterobacteriaceae protect against salmonella colonization through oxygen competition.Cell Host Microbe2019;25:128-39.e5

[126]

Warr AR,Munera D.Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization.PLoS Pathog2019;15:e1007652 PMCID:PMC6705877

[127]

Fu Y,Mekalanos JJ.Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host.Cell Host Microbe2013;14:652-63 PMCID:PMC3951154

[128]

Gao B,Huber C.Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni.PLoS Biol2017;15:e2001390 PMCID:PMC5438104

[129]

Caballero-Flores G,Fukuda S,Núñez G.An enteric pathogen subverts colonization resistance by evading competition for amino acids in the gut.Cell Host Microbe2020;28:526-33.e5 PMCID:PMC7554178

[130]

Ochi T,Kitamoto S.Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine.Sci Rep2016;6:27634 PMCID:PMC4908404

[131]

Ma N,Wu Y.Contributions of the interaction between dietary protein and gut microbiota to intestinal health.Curr Protein Pept Sci2017;18:795-808

[132]

Nikaido E,Baucheron S.Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses.Gut Pathog2012;4:5 PMCID:PMC3405474

[133]

Kohli N,Riordan R,Alaniz RC.The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system.PLoS One2018;13:e0190613 PMCID:PMC5771565

[134]

Hirakawa H,Takumi-Kobayashi A,Yamaguchi A.Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157:H7.Microbiology (Reading)2009;155:541-50

[135]

Bommarius B,Izrayelit Y.A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli.PLoS One2013;8:e54456 PMCID:PMC3553163

[136]

El-Zaatari M,Zhang M.Tryptophan catabolism restricts IFN-γ-expressing neutrophils and Clostridium difficile immunopathology.J Immunol2014;193:807-16 PMCID:PMC4091639

[137]

Kitamoto S,Rodrigues M.Dietary L-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut.Nat Microbiol2020;5:116-25 PMCID:PMC6925351

[138]

Battaglioli EJ,Chen J.Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea.Sci Transl Med2018;10:eaam7019 PMCID:PMC6537101

[139]

Lopez CA,Nurmakova K,Skaar EP.Clostridioides difficile proline fermentation in response to commensal clostridia.Anaerobe2020;63:102210 PMCID:PMC8025294

[140]

Momose Y,Itoh K.Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7.Antonie Van Leeuwenhoek2008;94:165-71

[141]

van Opijnen T,Camilli A.Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms.Curr Protoc Microbiol2015;36:1E.3.1-1E.3.24 PMCID:PMC4696536

[142]

Andreini C,Cavallaro G,Thornton JM.Metal ions in biological catalysis: from enzyme databases to general principles.J Biol Inorg Chem2008;13:1205-18

[143]

Hood MI.Nutritional immunity: transition metals at the pathogen-host interface.Nat Rev Microbiol2012;10:525-37 PMCID:PMC3875331

[144]

Lopez CA.The impact of dietary transition metals on host-bacterial interactions.Cell Host Microbe2018;23:737-48 PMCID:PMC6007885

[145]

Bolick DT,Moore JH 2nd.Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea.Gut Microbes2014;5:618-27 PMCID:PMC4615194

[146]

Medeiros P,Roche JK.The micronutrient zinc inhibits EAEC strain 042 adherence, biofilm formation, virulence gene expression, and epithelial cytokine responses benefiting the infected host.Virulence2013;4:624-33 PMCID:PMC3906296

[147]

Wiegand S,Eichner M.Zinc treatment is efficient against Escherichia coli α-haemolysin-induced intestinal leakage in mice.Sci Rep2017;7:45649 PMCID:PMC5374507

[148]

Zackular JP,Jordan AT.Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection.Nat Med2016;22:1330-4 PMCID:PMC5101143

[149]

Raffatellu M,Akiyama Y.Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine.Cell Host Microbe2009;5:476-86 PMCID:PMC2768556

[150]

Deriu E,Pezeshki M.Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron.Cell Host Microbe2013;14:26-37 PMCID:PMC3752295

[151]

Rivera-Chávez F.Cholera toxin promotes pathogen acquisition of host-derived nutrients.Nature2019;572:244-8 PMCID:PMC6727848

[152]

Constante M,Calvé A,Santos MM.Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice.Front Microbiol2017;8:1809 PMCID:PMC5613120

[153]

Jaeggi T,Moretti D.Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants.Gut2015;64:731-42

[154]

Lin F,Zeng M,Dong S.Probiotic/prebiotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice.Food Funct2018;9:1070-8

[155]

Paganini D,Kortman GAM.Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants.Gut2017;66:1956-67

[156]

Vazquez-Gutierrez P,Jaeggi T,Zimmerman MB.Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron.BMC Microbiol2015;15:3 PMCID:PMC4320568

[157]

Kehres DG,Slauch JM.SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar Typhimurium.J Bacteriol2002;184:3159-66 PMCID:PMC135093

[158]

Garcia YM,Tarrant E,Waldron KJ.A superoxide dismutase capable of functioning with iron or manganese promotes the resistance of staphylococcus aureus to calprotectin and nutritional immunity.PLoS Pathog2017;13:e1006125 PMCID:PMC5245786

[159]

Zhu W,Byndloss MX.Precision editing of the gut microbiota ameliorates colitis.Nature2018;553:208-11 PMCID:PMC5804340

[160]

Brugiroux S,Pfann C.Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.Nat Microbiol2016;2:16215

[161]

Wampach L,Fritz JV.Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential.Nat Commun2018;9:5091 PMCID:PMC6269548

[162]

Llewellyn SR,Contijoch EJ.Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice.Gastroenterology2018;154:1037-46.e2 PMCID:PMC5847454

[163]

Brotherton CS,Long MD,Sandler RS.Avoidance of fiber is associated with greater risk of Crohn’s disease flare in a 6-month period.Clin Gastroenterol Hepatol2016;14:1130-6 PMCID:PMC4930425

[164]

Zeevi D,Zmora N.Personalized nutrition by prediction of glycemic responses.Cell2015;163:1079-94

[165]

Kendall MM,Parker CT.Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7.mBio2012;3:e00050-12 PMCID:PMC3372972

[166]

Curtis MM,Klimko C,Deberardinis R.The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape.Cell Host Microbe2014;16:759-69 PMCID:PMC4269104

[167]

Carlson-Banning KM.Catabolite and oxygen regulation of enterohemorrhagic escherichia coli virulence.mBio2016;7:e01852-16 PMCID:PMC5120142

[168]

Connolly JP.Intracellular d-serine accumulation promotes genetic diversity via modulated induction of RecA in enterohemorrhagic Escherichia coli.J Bacteriol2016;198:3318-28 PMCID:PMC5116935

[169]

Gonyar LA.Ethanolamine and choline promote expression of putative and characterized fimbriae in enterohemorrhagic Escherichia coli O157:H7.Infect Immun2014;82:193-201 PMCID:PMC3911853

[170]

Morgan JK,Harro CM,Shaw LN.Global regulator of virulence A (GrvA) coordinates expression of discrete pathogenic mechanisms in enterohemorrhagic Escherichia coli through interactions with GadW-GadE.J Bacteriol2016;198:394-409 PMCID:PMC4719443

[171]

Pacheco AR,Ritchie JM.Fucose sensing regulates bacterial intestinal colonization.Nature2012;492:113-7 PMCID:PMC3518558

[172]

Kuo CJ,Lin CM.A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli.Cell Death Dis2018;9:381 PMCID:PMC5841434

[173]

Lamichhane-Khadka R,Maier SE.A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence.Open Biol2013;3:130146 PMCID:PMC3877842

[174]

Anderson CJ,Adli M.Correction: ethanolamine signaling promotes salmonella niche recognition and adaptation during infection.PLoS Pathog2015;11:e1005365 PMCID:PMC4684284

[175]

Winter SE,Winter MG.Gut inflammation provides a respiratory electron acceptor for Salmonella.Nature2010;467:426-9 PMCID:PMC2946174

[176]

Sabag-Daigle A,Sengupta A.A metabolic intermediate of the fructose-asparagine utilization pathway inhibits growth of a Salmonella fraB mutant.Sci Rep2016;6:28117 PMCID:PMC4941530

[177]

Faber F,Spiga L.Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis.PLoS Pathog2017;13:e1006129 PMCID:PMC5215881

[178]

Martin-Verstraete I,Dupuy B.The regulatory networks that control clostridium difficile toxin synthesis.Toxins (Basel)2016;8:153 PMCID:PMC4885068

[179]

Dubois T,Monot M.Control of clostridium difficile physiopathology in response to cysteine availability.Infect Immun2016;84:2389-405 PMCID:PMC4962627

[180]

Burns DA,Minton NP.SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate.J Bacteriol2010;192:657-64 PMCID:PMC2812441

[181]

Ferreyra JA,Hryckowian AJ,Weimer BC.Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance.Cell Host Microbe2014;16:770-7 PMCID:PMC4859344

[182]

Usui Y,Kamiichi Y.Impact of deoxycholate on Clostridioides difficile growth, toxin production, and sporulation.Heliyon2020;6:e03717 PMCID:PMC7160582

[183]

Hsiao A,Subramanian S.Members of the human gut microbiota involved in recovery from Vibrio cholerae infection.Nature2014;515:423-6 PMCID:PMC4353411

[184]

Chatterjee A,Chowdhury R.Effect of fatty acids and cholesterol present in bile on expression of virulence factors and motility of Vibrio cholerae.Infect Immun2007;75:1946-53 PMCID:PMC1865667

[185]

Häse CC.Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae.Proc Natl Acad Sci U S A1999;96:3183-7 PMCID:PMC15916

AI Summary AI Mindmap
PDF

258

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/