PDF
Abstract
There is emerging concern regarding the unintentional and often unrecognized antimicrobial properties of “non-antimicrobial” pesticides. This includes insecticides, herbicides, and fungicides commonly used in agriculture that are known to produce broad ranging, off-target effects on beneficial wildlife, even at seemingly non-toxic low dose exposures. Notably, these obscure adverse interactions may be related to host-associated microbiome damage occurring from antimicrobial effects, rather than the presumed toxic effects of pesticides on host tissue. Here, we critically review the literature on this topic as it pertains to the rhizosphere microbiome of crop plants and gut microbiome of pollinator insects (namely managed populations of the western honey bee, Apis mellifera), since both are frequent recipients of chronic pesticide exposure. Clear linkages between pesticide mode of action and host-specific microbiome functionalities are identified in relation to potential antimicrobial risks. For example, inherent differences in nitrogen metabolism of plant- and insect-associated microbiomes may dictate whether neonicotinoid-based insecticides ultimately exert antimicrobial activities or not. Several other context-dependent scenarios are discussed. In addition to direct effects (e.g., microbicidal action of the parent compound or breakdown metabolites), pesticides may indirectly alter the trajectory of host-microbiome coevolution in honey bees via modulation of social behaviours and the insect gut-brain axis - conceivably with consequences on plant-pollinator symbiosis as well. In summary, current evidence suggests: (1) immediate action is needed by regulatory authorities in amending safety assessments for “non-antimicrobial” pesticides; and (2) that the development of host-free microbiome model systems could be useful for rapidly screening pesticides against functionally distinct microbial catalogues of interest.
Keywords
Microbiome
/
host-microbe interactions
/
agriculture
/
pesticides
/
microbial evolution
/
microbe-xenobiotic interactions
/
bioremediation
/
environmental sustainability
Cite this article
Download citation ▾
Brendan A. Daisley, Anna M. Chernyshova, Graham J. Thompson, Emma Allen-Vercoe.
Deteriorating microbiomes in agriculture - the unintended effects of pesticides on microbial life.
Microbiome Research Reports, 2022, 1(1): 6 DOI:10.20517/mrr.2021.08
| [1] |
Banerjee S,van der Heijden MGA.Keystone taxa as drivers of microbiome structure and functioning.Nat Rev Microbiol2018;16:567-76
|
| [2] |
Wabnitz K,Guinto R.A pledge for planetary health to unite health professionals in the Anthropocene.Lancet2020;396:1471-3 PMCID:PMC7527204
|
| [3] |
Trinh P,Safranek S.One health relationships between human, animal, and environmental microbiomes: a mini-review.Front Public Health2018;6:235 PMCID:PMC6125393
|
| [4] |
Guerrero R,Berlanga M.Symbiogenesis: the holobiont as a unit of evolution.Int Microbiol2013;16:133-43
|
| [5] |
Moran NA,Hammer TJ.Evolutionary and ecological consequences of gut microbial communities.Annu Rev Ecol Evol Syst2019;50:451-75 PMCID:PMC7392196
|
| [6] |
Barribeau SM,du Plessis L.A depauperate immune repertoire precedes evolution of sociality in bees.Genome Biol2015;16:83 PMCID:PMC4408586
|
| [7] |
Busby PE,Wagner MR.Research priorities for harnessing plant microbiomes in sustainable agriculture.PLoS Biol2017;15:e2001793 PMCID:PMC5370116
|
| [8] |
Ramírez-Puebla ST,Jiménez-Marín B.Gut and root microbiota commonalities.Appl Environ Microbiol2013;79:2-9 PMCID:PMC3536091
|
| [9] |
Foster KR,Coyte KZ.The evolution of the host microbiome as an ecosystem on a leash.Nature2017;548:43-51 PMCID:PMC5749636
|
| [10] |
CERIS. National Pesticide Information Retrieval System. Available from: http://npirspublic.ceris.purdue.edu/ppis [Last accessed on 25 Jan 2022]
|
| [11] |
Prescott SL,Logan AC.Dysbiotic drift and biopsychosocial medicine: how the microbiome links personal, public and planetary health.Biopsychosoc Med2018;12:7 PMCID:PMC5932796
|
| [12] |
FAO. Pesticide use. Global, regional and country trends 1990-2018. Available from: https://fao.org/documents/card/en/c/cb3411en/ [Last accessed on 25 Jan 2022]
|
| [13] |
Blaser MJ.The theory of disappearing microbiota and the epidemics of chronic diseases.Nat Rev Immunol2017;17:461-3
|
| [14] |
Musso G,Cassader M.Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?.Diabetes Care2010;33:2277-84 PMCID:PMC2945175
|
| [15] |
Daisley BA,Engelbrecht K.Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases.Cell Rep2021;37:110087
|
| [16] |
Franzosa EA,Avila-Pacheco J.Gut microbiome structure and metabolic activity in inflammatory bowel disease.Nat Microbiol2019;4:293-305 PMCID:PMC6342642
|
| [17] |
Qin J,Cai Z.A metagenome-wide association study of gut microbiota in type 2 diabetes.Nature2012;490:55-60
|
| [18] |
Liu R,Xu X.Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention.Nat Med2017;23:859-68
|
| [19] |
Jie Z,Zhong SL.The gut microbiome in atherosclerotic cardiovascular disease.Nat Commun2017;8:845 PMCID:PMC5635030
|
| [20] |
Helmink BA,Hermann A,Wargo JA.The microbiome, cancer, and cancer therapy.Nat Med2019;25:377-88
|
| [21] |
Johnson RM,Mullin CA.Pesticides and honey bee toxicity - USA.Apidologie2010;41:312-31
|
| [22] |
Rani L,Kanojia N.An extensive review on the consequences of chemical pesticides on human health and environment.J Clean Prod2021;283:124657
|
| [23] |
Köhler HR.Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?.Science2013;341:759-65
|
| [24] |
Sharma A,Shahzad B.Worldwide pesticide usage and its impacts on ecosystem.SN Appl Sci2019;1:1446
|
| [25] |
EPA. Pesticide Registration Process. Environ Prot Agency 2021. Available from: https://epa.gov/pesticide-science-and-assessing-pesticide-risks/overview-risk-assessment-pesticide-program [Last accessed on 25 Jan 2022]
|
| [26] |
eCFR. Protection of Environment. Code Fed Regul 2013. Available from: https://www.ecfr.gov/current/title-40 [Last accessed on 29 November 2021]
|
| [27] |
Trudgill PW,Rees JS.Effects of organochlorine insecticides on bacterial growth, respiration and viability.J Gen Microbiol1971;69:1-13
|
| [28] |
Bollen WB,Crowell HH.Effect of field and laboratory treatments with BHC and DDT on nitrogen transformations and soil respiration1.J Econ Entomol1954;47:307-12
|
| [29] |
Nogrado K,Chon K.Effect of transient exposure to carbaryl wettable powder on the gut microbial community of honey bees.Appl Biol Chem2019;62:6
|
| [30] |
Khoury S, Gauthier J, Bouslama S, Cheaib B, Giovenazzo P, Derome N. Dietary contamination with a neonicotinoid (Clothianidin) gradient triggers specific dysbiosis signatures of microbiota activity along the honeybee (Apis mellifera) digestive tract.Microorganisms2021;9:2283 PMCID:PMC8619528
|
| [31] |
Raymann K,Girard C,Dinser JA.Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome.Appl Environ Microbiol2018;84:e00545-18
|
| [32] |
Cycoń M.Community structure of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in soil treated with the insecticide imidacloprid.Biomed Res Int2015;2015:582938 PMCID:PMC4331321
|
| [33] |
Mahapatra B,Patil NKB.Imidacloprid application changes microbial dynamics and enzymes in rice soil.Ecotoxicol Environ Saf2017;144:123-30
|
| [34] |
Alberoni D,Baffoni L,Di Gioia D.Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome.Sci Total Environ2021;762:144116
|
| [35] |
Zhao Y,Cheng X.Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite.Int Biodeterior Biodegrad2019;145:104806
|
| [36] |
Zhu L,Xue X,Wu L.Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.).Environ Pollut2020;258:113671
|
| [37] |
Fox JE,Kow KY,McLachlan JA.Nitrogen fixation. Endocrine disrupters and flavonoid signalling.Nature2001;413:128-9
|
| [38] |
Santoro PH,Alexandre TM,Neves PMOJ.In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides.Braz arch biol technol2014;57:238-43
|
| [39] |
Motta EVS,Moran NA.Glyphosate perturbs the gut microbiota of honey bees.Proc Natl Acad Sci U S A2018;115:10305-10 PMCID:PMC6187125
|
| [40] |
Fernandez M,Basnyat P,Selles F.Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies.Eur J Agron2009;31:133-43
|
| [41] |
Khan S,Khan MS.Fungicide-tolerant plant growth-promoting rhizobacteria mitigate physiological disruption of white radish caused by fungicides used in the field cultivation.Int J Environ Res Public Health2020;17:7251 PMCID:PMC7579310
|
| [42] |
Fravel D,Stommel J.Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides.Biological Control2005;34:165-9
|
| [43] |
Kakumanu ML,Anderson TD,Williams MA.Honey bee gut microbiome is altered by in-hive pesticide exposures.Front Microbiol2016;7:1255 PMCID:PMC4985556
|
| [44] |
Degrandi-hoffman G,Dejong EW,Hidalgo G.Honey bee gut microbial communities are robust to the fungicide Pristine® consumed in pollen.Apidologie2017;48:340-52
|
| [45] |
Mustard JA,Wright GA.GABA signaling affects motor function in the honey bee.J Insect Physiol2020;120:103989
|
| [46] |
MacRae IC,Castro TF.Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils.J Agric Food Chem1967;15:911-4
|
| [47] |
Gray PHH.Effects of benzene hexachloride on soil micro-organisms. Can J Bot 1954;32:1-9.
|
| [48] |
Shahid M,Altaf M.Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, and biofilm-formation and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35.ACS Omega2021;6:5548-59 PMCID:PMC7931423
|
| [49] |
Quillin SJ,Prindle A.Potential roles for gamma-aminobutyric acid signaling in bacterial communities.Bioelectricity2021;3:120-5 PMCID:PMC8380936
|
| [50] |
Strandwitz P,Terekhova D.GABA-modulating bacteria of the human gut microbiota.Nat Microbiol2019;4:396-403 PMCID:PMC6384127
|
| [51] |
Zadoks J.From pesticides to genetically modified plants: history, economics and politics.NJAS - Wagening J Life Sci2000;48:125-49
|
| [52] |
Mullin CA,Frazier JL.High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health.PLoS One2010;5:e9754 PMCID:PMC2841636
|
| [53] |
Yoder JA,Rosselot AE,Yerke MC.Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies.J Toxicol Environ Health A2013;76:587-600
|
| [54] |
Park MG,Gibbs J,Danforth BN.Negative effects of pesticides on wild bee communities can be buffered by landscape context.Proc Biol Sci2015;282:20150299 PMCID:PMC4590442
|
| [55] |
Bernauer OM,Steffan SA.Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure.Insects2015;6:478-88 PMCID:PMC4553493
|
| [56] |
Evison SE.The biology and prevalence of fungal diseases in managed and wild bees.Curr Opin Insect Sci2018;26:105-13
|
| [57] |
Paludo CR,Silva-Junior EA.Stingless bee larvae require fungal steroid to pupate.Sci Rep2018;8:1122 PMCID:PMC5773678
|
| [58] |
Traynor KS,Tarpy DR.In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States.Sci Rep2016;6:33207 PMCID:PMC5024099
|
| [59] |
Steffan SA,Diaz-Garcia L,Zalapa J.Empirical, metagenomic, and computational techniques illuminate the mechanisms by which fungicides compromise bee health.J Vis Exp2017; PMCID:PMC5752386
|
| [60] |
Paris L,Moné A.Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae.J Invertebr Pathol2020;172:107348
|
| [61] |
Hsu CK,Wu MC.A potential fungal probiotic Aureobasidium melanogenum CK-CsC for the Western honey bee, Apis mellifera.J Fungi (Basel)2021;7:508 PMCID:PMC8306588
|
| [62] |
Trivedi P,Tringe SG,Singh BK.Plant-microbiome interactions: from community assembly to plant health.Nat Rev Microbiol2020;18:607-21
|
| [63] |
van Tilburg Bernardes E,Gutierrez MW.Intestinal fungi are causally implicated in microbiome assembly and immune development in mice.Nat Commun2020;11:2577 PMCID:PMC7244730
|
| [64] |
Jackson CJ,Kelly DE.Bactericidal and inhibitory effects of azole antifungal compounds on Mycobacterium smegmatis.FEMS Microbiol Lett2000;192:159-62
|
| [65] |
Syromyatnikov MY,Savinkova OV,Popov VN.The effect of pesticides on the microbiome of animals.Agriculture2020;10:79
|
| [66] |
Motta EVS,De Jong TK.Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees.Appl Environ Microbiol2020;86:e01150-20 PMCID:PMC7480383
|
| [67] |
Blot N,Rouzé R.Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota.PLoS One2019;14:e0215466 PMCID:PMC6467416
|
| [68] |
Horak RD,Moran NA.Symbionts shape host innate immunity in honeybees.Proc Biol Sci2020;287:20201184 PMCID:PMC7482289
|
| [69] |
Castelli L,Branchiccela B.Impact of chronic exposure to sublethal doses of glyphosate on honey bee immunity, gut microbiota and infection by pathogens.Microorganisms2021;9:845 PMCID:PMC8071123
|
| [70] |
Helander M,Omacini M,Salminen JP.Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback.Sci Total Environ2018;642:285-91
|
| [71] |
Van Bruggen AHC,Shin K.Environmental and health effects of the herbicide glyphosate.Sci Total Environ2018;616-617:255-68
|
| [72] |
Schlatter DC,Hulbert S,Paulitz T.Impacts of repeated glyphosate use on wheat-associated bacteria are small and depend on glyphosate use history.Appl Environ Microbiol2017;83:e01354-17 PMCID:PMC5666137
|
| [73] |
Ramirez-Villacis DX,Salas-González I.Root microbiome modulates plant growth promotion induced by low doses of glyphosate.mSphere2020;5:e00484-20 PMCID:PMC7426167
|
| [74] |
Nguyen DB,Rose TJ,van Zwieten L.Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis.Soil Biol Biochem2016;92:50-7
|
| [75] |
Ramakrishnan B,Venkateswarlu K.Linkages between plant rhizosphere and animal gut environments: interaction effects of pesticides with their microbiomes.Environ Adv2021;5:100091
|
| [76] |
Goulson D.The insect apocalypse, and why it matters.Curr Biol2019;29:R967-71
|
| [77] |
Sánchez-Bayo F.Environmental science. The trouble with neonicotinoids.Science2014;346:806-7
|
| [78] |
Tsvetkov N,Sood K.Chronic exposure to neonicotinoids reduces honey bee health near corn crops.Science2017;356:1395-7
|
| [79] |
Macías-Macías JO,De la Mora A.Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana.Sci Rep2020;10:17021 PMCID:PMC7550335
|
| [80] |
Jones JC,Hildebrand F.Gut microbiota composition is associated with environmental landscape in honey bees.Ecol Evol2018;8:441-51 PMCID:PMC5756847
|
| [81] |
Mason R,Sánchez-Bayo F.Immune suppression by neonicotinoid insecticides at the root of global wildlife declines.J Environ Immunol Toxicol2013;1:3-12
|
| [82] |
Chmiel JA,Burton JP.Deleterious effects of neonicotinoid pesticides on drosophila melanogaster immune pathways.mBio2019;10:e01395-19 PMCID:PMC6775452
|
| [83] |
Daisley BA,McDowell TW.Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model.Sci Rep2017;7:2703 PMCID:PMC5457429
|
| [84] |
Kwong WK,Moran NA.Immune system stimulation by the native gut microbiota of honey bees.R Soc Open Sci2017;4:170003 PMCID:PMC5367273
|
| [85] |
Daisley BA,Chmiel JA.Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees.Commun Biol2020;3:534 PMCID:PMC7519052
|
| [86] |
Woodcock BA,Shore RF.Country-specific effects of neonicotinoid pesticides on honey bees and wild bees.Science2017;356:1393-5
|
| [87] |
Lisuma JB,Ndakidemi PA.Influence of nicotine released in soils to the growth of subsequent maize crop, soil bacteria and fungi.Int J Agric Biol2019;22:1-12
|
| [88] |
Wulff JA,Regan K,Szczepaniec A.Neonicotinoid insecticides alter the transcriptome of soybean and decrease plant resistance.Int J Mol Sci2019;20:783 PMCID:PMC6387383
|
| [89] |
Cycoń M.Biochemical and microbial soil functioning after application of the insecticide imidacloprid.J Environ Sci (China)2015;27:147-58
|
| [90] |
Bonmatin JM,Girolami V.Environmental fate and exposure; neonicotinoids and fipronil.Environ Sci Pollut Res Int2015;22:35-67 PMCID:PMC4284396
|
| [91] |
Zhou GC,Zhai S.Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23.Appl Microbiol Biotechnol2013;97:4065-74
|
| [92] |
Lu TQ,Sun SL,Ge F.Regulation of hydroxylation and nitroreduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by pseudomonas putida.J Agric Food Chem2016;64:4866-75
|
| [93] |
Mohammed YMM.Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3.J Environ Sci Health B2017;52:752-61
|
| [94] |
Pang S,Zhang W,Bhatt P.Insights into the microbial degradation and biochemical mechanisms of neonicotinoids.Front Microbiol2020;11:868 PMCID:PMC7248232
|
| [95] |
Shahid M,Ahmed B,Bahkali AH.Physiological disruption, structural deformation and low grain yield induced by neonicotinoid insecticides in chickpea: A long term phytotoxicity investigation.Chemosphere2021;262:128388
|
| [96] |
Douglas MR,Tooker JF.EDITOR’S CHOICE: Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield.J Appl Ecol2015;52:250-60
|
| [97] |
Myresiotis CK,Papadopoulou-Mourkidou E.Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings.Pest Manag Sci2015;71:1258-66
|
| [98] |
Flores-Céspedes F,Fernández-Pérez M,Socías-Viciana M.Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil.J Environ Qual2002;31:880-8
|
| [99] |
Oi M.Time-dependent sorption of imidacloprid in two different soils.J Agric Food Chem1999;47:327-32
|
| [100] |
Suchail S,Belzunces LP.Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in.Apis mellifera20:2482-6
|
| [101] |
Daisley BA,McDowell TW,Sumarah MW.Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a drosophila melanogaster insect model.Appl Environ Microbiol2018;84:e02820-17 PMCID:PMC5930343
|
| [102] |
Xia X,Zhong H.DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance.PLoS One2013;8:e68852 PMCID:PMC3716819
|
| [103] |
Lukwinski AT,Khachatourians GG,Hegedus DD.Biochemical and taxonomic characterization of bacteria associated with the crucifer root maggot (Delia radicum).Can J Microbiol2006;52:197-208
|
| [104] |
Engel P.The gut microbiota of insects - diversity in structure and function.FEMS Microbiol Rev2013;37:699-735
|
| [105] |
Almeida LG,Trigo JR,Cônsoli FL.The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation.PLoS One2017;12:e0174754 PMCID:PMC5373613
|
| [106] |
French E,Iyer-Pascuzzi A,Enders L.Emerging strategies for precision microbiome management in diverse agroecosystems.Nat Plants2021;7:256-67
|
| [107] |
Erler S,Bobiş O,Moritz RF.Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera.Ecol Evol2014;4:3960-7 PMCID:PMC4242578
|
| [108] |
Blacquière T,van Gestel CA.Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment.Ecotoxicology2012;21:973-92 PMCID:PMC3338325
|
| [109] |
Cullen MG,Carolan JC,Stanley DA.Fungicides, herbicides and bees: a systematic review of existing research and methods.PLoS One2019;14:e0225743 PMCID:PMC6903747
|
| [110] |
Martinson VG,Minckley RL,Tingek S.A simple and distinctive microbiota associated with honey bees and bumble bees.Mol Ecol2011;20:619-28
|
| [111] |
Daisley BA.BEExact: a metataxonomic database tool for high-resolution inference of bee-associated microbial communities.mSystems2021;6:e00082-21 PMCID:PMC8546966
|
| [112] |
Kwong WK,Koch H.Dynamic microbiome evolution in social bees.Sci Adv2017;3:e1600513 PMCID:PMC5371421
|
| [113] |
Kwong WK.Gut microbial communities of social bees.Nat Rev Microbiol2016;14:374-84 PMCID:PMC5648345
|
| [114] |
Jones JC,Marchant J.The gut microbiome is associated with behavioural task in honey bees.Insectes Soc2018;65:419-29 PMCID:PMC6061168
|
| [115] |
Liberti J.The gut microbiota - brain axis of insects.Curr Opin Insect Sci2020;39:6-13
|
| [116] |
Koch H,Stevenson PC.The role of disease in bee foraging ecology.Curr Opin Insect Sci2017;21:60-7
|
| [117] |
Decourtye A,Pham-Delègue MH.Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season.Pest Manag Sci2003;59:269-78
|
| [118] |
Kešnerová L,Troilo M,Erkosar B.Gut microbiota structure differs between honeybees in winter and summer.ISME J2020;14:801-14 PMCID:PMC7031341
|
| [119] |
Chmiel JA,Pitek AP,Reid G.Understanding the effects of sublethal pesticide exposure on honey bees: a role for probiotics as mediators of environmental stress.Front Ecol Evol2020;8:22
|
| [120] |
Robinson GE.Regulation of division of labor in insect societies.Annu Rev Entomol1992;37:637-65
|
| [121] |
Nouvian M,Giurfa M.The defensive response of the honeybee Apis mellifera.J Exp Biol2016;219:3505-17
|
| [122] |
Martin CR,Kalani A.The brain-gut-microbiome axis.Cell Mol Gastroenterol Hepatol2018;6:133-48 PMCID:PMC6047317
|
| [123] |
Brauner A,Gefen O.Distinguishing between resistance, tolerance and persistence to antibiotic treatment.Nat Rev Microbiol2016;14:320-30
|
| [124] |
Ramakrishnan B,Sethunathan N.Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance?.Sci Total Environ2019;654:177-89
|
| [125] |
Blanco P,Reales-Calderon JA.Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants.Microorganisms2016;4:14 PMCID:PMC5029519
|
| [126] |
Kurenbach B,Amábile-Cuevas CF.Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium.mBio2015;6:e00009-15 PMCID:PMC4453521
|
| [127] |
Fraise AP.Biocide abuse and antimicrobial resistance--a cause for concern?.J Antimicrob Chemother2002;49:11-2
|
| [128] |
Xing Y,Men Y.Exposure to environmental levels of pesticides stimulates and diversifies evolution in Escherichia coli toward higher antibiotic resistance.Environ Sci Technol2020;54:8770-8
|
| [129] |
Rangasamy K,Devarajan N.Emergence of multi drug resistance among soil bacteria exposing to insecticides.Microb Pathog2017;105:153-65
|
| [130] |
Harper LL,Miller CE.Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.Appl Environ Microbiol1988;54:2586-9 PMCID:PMC204325
|
| [131] |
Horne I,Harcourt RL,Oakeshott JG.Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate.Appl Environ Microbiol2002;68:3371-6 PMCID:PMC126808
|
| [132] |
Mulbry WW.Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein.J Bacteriol1989;171:6740-6 PMCID:PMC210571
|
| [133] |
Singh BK.Organophosphorus-degrading bacteria: ecology and industrial applications.Nat Rev Microbiol2009;7:156-64
|
| [134] |
Utembe W.Gut microbiota-mediated pesticide toxicity in humans: Methodological issues and challenges in the risk assessment of pesticides.Chemosphere2021;271:129817
|
| [135] |
McDonald JA,Fuentes S.Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model.J Microbiol Methods2013;95:167-74
|
| [136] |
Van de Wiele T, Van den Abbeele P, Ossieur W, Possemiers S, Marzorati M. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In: Verhoeckx K, Cotter P, López-expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors. The Impact of Food Bioactives on Health. Cham: Springer International Publishing; 2015. p. 305-17.
|
| [137] |
Daisley BA,Abdur-Rashid K.Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients.Nat Commun2020;11:4822 PMCID:PMC7515896
|