Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods

Kelsey White , Jun-Hyeok Yu , Giovanni Eraclio , Fabio Dal Bello , Arjen Nauta , Jennifer Mahony , Douwe van Sinderen

Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (1) : 3

PDF
Microbiome Research Reports ›› 2022, Vol. 1 ›› Issue (1) :3 DOI: 10.20517/mrr.2021.04
Review

Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods

Author information +
History +
PDF

Abstract

Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.

Keywords

Bacteriophage / phageome / prophage / fermented foods / metagenome / receptor / anti-phage activity

Cite this article

Download citation ▾
Kelsey White, Jun-Hyeok Yu, Giovanni Eraclio, Fabio Dal Bello, Arjen Nauta, Jennifer Mahony, Douwe van Sinderen. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. Microbiome Research Reports, 2022, 1(1): 3 DOI:10.20517/mrr.2021.04

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu L,Rosenberg D,Lengyel G.Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting.J Archaeol Sci Reports2018;21:783-93

[2]

Tamang JP,Endo A.Fermented foods in a global age: East meets West.Compr Rev Food Sci Food Saf2020;19:184-217

[3]

Tamang JP,Holzapfel WH.Review: diversity of microorganisms in global fermented foods and beverages.Front Microbiol2016;7:377 PMCID:PMC4805592

[4]

Galimberti A,Agostinetto G,Guzzetti L.Fermented food products in the era of globalization: tradition meets biotechnology innovations.Curr Opin Biotechnol2021;70:36-41

[5]

Rezac S,Heermann M.Fermented foods as a dietary source of live organisms.Front Microbiol2018;9:1785 PMCID:PMC6117398

[6]

Marco ML,Binda S.Health benefits of fermented foods: microbiota and beyond.Curr Opin Biotechnol2017;44:94-102

[7]

Terefe NS. Food fermentation. In: Smithers G, editor. Reference module in food science. Elsevier; 2016. p. 1-3.

[8]

Conte M,Nigro F.Pro-pre and postbiotic in celiac disease.Appl Sci2021;11:8185

[9]

Gobbetti M,Di Cagno R,Fox PF.Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening.Trends Food Sci Technol2015;45:167-78

[10]

Vinicius De Melo Pereira G,Junqueira ACDO.A review of selection criteria for starter culture development in the food fermentation industry.Food Rev Int2020;36:135-67

[11]

Mahony J,Kelleher P.Phage biodiversity in artisanal cheese Wheys reflects the complexity of the fermentation process.Viruses2017;9:45 PMCID:PMC5371800

[12]

Andrighetto C,Barmaz A,Lombardi A.Genetic diversity of Streptococcus thermophilus strains isolated from Italian traditional cheeses.Int Dairy J2002;12:141-4

[13]

Lu Z,Hayes JS.Bacteriophage ecology in a commercial cucumber fermentation.Appl Environ Microbiol2012;78:8571-8 PMCID:PMC3502900

[14]

McGrath S,van Sinderen D. Starter cultures: bacteriophages. In: Fox P, McSweeney P, Cogan T, Guinee T, editors. Cheese: chemistry, physics and microbiology. Academic Press; 2004. p. 163-90.

[15]

Bockelmann W.Development of defined surface starter cultures for the ripening of smear cheeses.Int Dairy J2002;12:123-31

[16]

Nambou K,Zhou F,Ai L.A novel approach of direct formulation of defined starter cultures for different kefir-like beverage production.Int Dairy J2014;34:237-46

[17]

Pujato SA,Mercanti DJ.Bacteriophages on dairy foods.J Appl Microbiol2019;126:14-30

[18]

Spus M,Alexeeva S.Strain diversity and phage resistance in complex dairy starter cultures.J Dairy Sci2015;98:5173-82

[19]

Pujato SA,Guglielmotti DM.Phages of dairy Leuconostoc mesenteroides: genomics and factors influencing their adsorption.Int J Food Microbiol2015;201:58-65

[20]

Lavelle K,Neve H.Biodiversity of Streptococcus thermophilus phages in global dairy fermentations.Viruses2018;10:577 PMCID:PMC6213268

[21]

Deveau H,Chopin MC.Biodiversity and classification of lactococcal phages.Appl Environ Microbiol2006;72:4338-46 PMCID:PMC1489595

[22]

Zrelovs N,Kazaks A.Genome characterization of nocturne116, novel Lactococcus lactis-infecting phage isolated from moth.Microorganisms2021;9:1540 PMCID:PMC8306868

[23]

Mahony J,Collins B.Genetic and functional characterisation of the lactococcal P335 phage-host interactions.BMC Genomics2017;18:146 PMCID:PMC5301393

[24]

Mahony J,van Sinderen D.Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention.Front Microbiol2012;3:335 PMCID:PMC3445015

[25]

Mahony J,Mc Grath S.Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species.FEMS Microbiol Lett2006;261:253-61

[26]

Hayes S,Vincentelli R.Ubiquitous carbohydrate binding modules decorate 936 lactococcal siphophage virions.Viruses2019;11:631 PMCID:PMC6669499

[27]

Oliveira J,Hanemaaijer L,van Sinderen D.Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures.J Dairy Sci2018;101:96-105

[28]

Kelly WJ,Lambie SC.Interaction between the genomes of Lactococcus lactis and phages of the P335 species.Front Microbiol2013;4:257 PMCID:PMC3757294

[29]

Durmaz E,Israelsen H.Lactococcus lactis lytic bacteriophages of the P335 group are inhibited by overexpression of a truncated CI repressor.J Bacteriol2002;184:6532-44 PMCID:PMC135409

[30]

Madsen SM,Djordjevic G,Klaenhammer TR.Analysis of the genetic switch and replication region of a P335-type bacteriophage with an obligate lytic lifestyle on Lactococcus lactis.Appl Environ Microbiol2001;67:1128-39 PMCID:PMC92705

[31]

Quiberoni A,Ackermann H,Reinheimer J.Diversity of streptococcus thermophilus phages in a large-production cheese factory in argentina.J Dairy Sci2006;89:3791-9

[32]

Lavelle K,Fitzgerald B.A decade of streptococcus thermophilus phage evolution in an Irish dairy plant.Appl Environ Microbiol2018;84:e02855-17 PMCID:PMC5930364

[33]

Brussow H,Bruttin A,Constable A.Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation.Appl Environ Microbiol1994;60:4537-43 PMCID:PMC202016

[34]

Hanemaaijer L,Neve H.Biodiversity of phages infecting the dairy bacterium Streptococcus thermophilus.Microorganisms2021;9:1822 PMCID:PMC8470116

[35]

Quiberoni A,Rousseau GM,Ackermann H.Streptococcus thermophilus bacteriophages.Int Dairy J2010;20:657-64

[36]

Szymczak P,Neves AR.Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species.Appl Environ Microbiol2017;83:e02748-16 PMCID:PMC5311409

[37]

Mills S,O’sullivan O.A new phage on the ‘Mozzarella’ block: Bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages.Int Dairy J2011;21:963-9

[38]

McDonnell B,Neve H.Identification and analysis of a novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus.Appl Environ Microbiol2016;82:5153-65 PMCID:PMC4988201

[39]

Le Marrec C,Walsh L.Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins.Appl Environ Microbiol1997;63:3246-53 PMCID:PMC168623

[40]

Alexandraki V,Blom J,Papadimitriou K.Comparative genomics of Streptococcus thermophilus support important traits concerning the evolution, biology and technological properties of the species.Front Microbiol2019;10:2916 PMCID:PMC6951406

[41]

Carminati D.Evidence and characterization of temperate bacteriophage in Streptococcus salivarius subsp. thermophilus St18.J Dairy Res1992;59:71-9

[42]

Vinga I,Auzat I.Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection.Mol Microbiol2012;83:289-303

[43]

Dieterle ME,Durán R.Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23.Appl Microbiol Biotechnol2016;100:9201-15

[44]

Dupont K,Vogensen FK,Stuer-Lauridsen B.Identification of Lactococcus lactis genes required for bacteriophage adsorption.Appl Environ Microbiol2004;70:5825-32 PMCID:PMC522090

[45]

Legrand P,Blangy S.The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules.mBio2016;7:e01781-15 PMCID:PMC4742702

[46]

Farenc C,Vinogradov E.Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein.J Virol2014;88:7005-15 PMCID:PMC4054337

[47]

Mahony J,Neve H,van Sinderen D.Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface.Appl Environ Microbiol2015;81:3299-305 PMCID:PMC4407214

[48]

Villion M,Deveau H,Moineau S.P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage.Virology2009;388:49-56

[49]

Marcelli B,Karsens H,Kok J.A specific sugar moiety in the Lactococcus lactis cell wall pellicle is required for infection by CHPC971, a member of the rare 1706 phage species.Appl Environ Microbiol2019;85:e01224-19 PMCID:PMC6752003

[50]

Valyasevi R,Geller BL.A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2.J Bacteriol1991;173:6095-100 PMCID:PMC208356

[51]

Monteville MR,Geller BL.Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA.Appl Environ Microbiol1994;60:3204-11 PMCID:PMC201790

[52]

Derkx PM,Sørensen KI,Stuer-Lauridsen B.The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology.Microb Cell Fact2014;13 Suppl 1:S5 PMCID:PMC4155822

[53]

Szymczak P,Covas G,Neves AR.Cell wall glycans mediate recognition of the dairy bacterium Streptococcus thermophilus by bacteriophages.Appl Environ Microbiol2018;84:e01847-18 PMCID:PMC6238053

[54]

McDonnell B,Hanemaaijer L.Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus.Front Microbiol2017;8:1754 PMCID:PMC5601072

[55]

Lavelle K,McDonnell B.Revisiting the host adhesion determinants of Streptococcus thermophilus siphophages.Microb Biotechnol2020;13:1765-79 PMCID:PMC7533335

[56]

McDonnell B,Bottacini F.A cell wall-associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface.Mol Microbiol2020;114:31-45

[57]

Räisänen L,Jaakonsaari T.Characterization of lipoteichoic acids as Lactobacillus delbrueckii phage receptor components.J Bacteriol2004;186:5529-32 PMCID:PMC490942

[58]

Kot W,Heller KJ.Bacteriophages of leuconostoc, oenococcus, and weissella.Front Microbiol2014;5:186 PMCID:PMC4009412

[59]

Mahony J,van Sinderen D.Host recognition by lactic acid bacterial phages.FEMS Microbiol Rev2017;41:S16-26

[60]

Collins B,Mahony J.Structure and functional analysis of the host recognition device of lactococcal phage tuc2009.J Virol2013;87:8429-40 PMCID:PMC3719809

[61]

Chmielewska-Jeznach M,Szczepankowska AK.Lactococcus ceduovirus phages isolated from industrial dairy plants-from physiological to genomic analyses.Viruses2020;12:280 PMCID:PMC7150918

[62]

Mahony J,Vinogradov E.The CWPS Rubik’s cube: linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected Lactococcus lactis strains.Mol Microbiol2020;114:582-96

[63]

Mahony J,Murphy J.Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny.Appl Environ Microbiol2013;79:4385-92 PMCID:PMC3697520

[64]

Ainsworth S,Vinogradov E.Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity.mBio2014;5:e00880-14 PMCID:PMC4010823

[65]

Murphy J,Mahony J.Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages.Sci Rep2016;6:21345 PMCID:PMC4759559

[66]

Vegge CS,Mc Grath S,van Sinderen D.Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009.J Bacteriol2006;188:55-63 PMCID:PMC1317572

[67]

Romero DA,Millen A,Fremaux C.Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape.FEMS Microbiol Rev2020;44:909-32

[68]

Binetti A,Reinheimer J.Phage adsorption to Streptococcus thermophilus. Influence of environmental factors and characterization of cell-receptors.Food Res Int2002;35:73-83

[69]

Quiberoni A,Reinheimer JA.Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol.J Appl Microbiol2000;89:1059-65

[70]

Szymczak P,Monteiro JM.A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages.Sci Rep2019;9:7991 PMCID:PMC6541646

[71]

Millen AM.Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution.J Gen Virol2016;97:1998-2007 PMCID:PMC5156332

[72]

Lubbers MW,Beresford TP,Jarvis AW.Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes.Appl Environ Microbiol1995;61:4348-56 PMCID:PMC167745

[73]

Chandry PS,Boyce JD,Hillier AJ.Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1.Mol Microbiol1997;26:49-64

[74]

Dupont K,Neve H,Josephsen J.Identification of the receptor-binding protein in 936-species lactococcal bacteriophages.Appl Environ Microbiol2004;70:5818-24 PMCID:PMC522089

[75]

Spinelli S,Verrips CT,Moineau S.Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses.Nat Struct Mol Biol2006;13:85-9

[76]

Siponen M,Blangy S,Cambillau C.Crystal structure of a chimeric receptor binding protein constructed from two lactococcal phages.J Bacteriol2009;191:3220-5 PMCID:PMC2687176

[77]

Duplessis M.Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages.Mol Microbiol2001;41:325-36

[78]

Vegge CS,Brøndsted L,Vogensen FK.Analysis of the collar-whisker structure of temperate lactococcal bacteriophage TP901-1.Appl Environ Microbiol2006;72:6815-8 PMCID:PMC1610273

[79]

Hayes S,Mahony J.Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gram-positive bacteria.Mol Microbiol2018;110:777-95

[80]

Kot W,Neve H.Sequence and comparative analysis of Leuconostoc dairy bacteriophages.Int J Food Microbiol2014;176:29-37

[81]

Plisson C,Auzat I.Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection.EMBO J2007;26:3720-8 PMCID:PMC1949002

[82]

Baptista C,São-José C.Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB.J Bacteriol2008;190:4989-96 PMCID:PMC2446999

[83]

Rio B, Sánchez-Llana E, Martínez N, Fernández M, Ladero V, Alvarez MA. Isolation and characterization of Enterococcus faecalis-infecting bacteriophages from different cheese types.Front Microbiol2020;11:592172 PMCID:PMC7820071

[84]

Carlton RM,Biswas B,Loessner MJ.Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application.Regul Toxicol Pharmacol2005;43:301-12

[85]

Erkus O,Spus M.Multifactorial diversity sustains microbial community stability.ISME J2013;7:2126-36 PMCID:PMC3806261

[86]

Melo AG, Rousseau GM, Tremblay DM, Labrie SJ, Moineau S. DNA tandem repeats contribute to the genetic diversity of Brevibacterium aurantiacum phages.Environ Microbiol2020;22:3413-28

[87]

Kelleher P,Schweinlin K,Franz CM.Assessing the functionality and genetic diversity of lactococcal prophages.Int J Food Microbiol2018;272:29-40

[88]

Ventura M,Kleerebezem M,Siezen RJ.The prophage sequences of Lactobacillus plantarum strain WCFS1.Virology2003;316:245-55

[89]

Brandt K,Alatossava T.Phage-related DNA polymorphism in dairy and probiotic Lactobacillus.Micron2001;32:59-65

[90]

Reiter B.Lysogenic strains of lactic streptococci.Nature1949;164:667

[91]

Terzaghi BE.Bacteriophage production following exposure of lactic streptococci to ultraviolet radiation.Microbiology1981;122:305-11

[92]

Oliveira J,Hanemaaijer L.Detecting Lactococcus lactis prophages by mitomycin C-mediated induction coupled to flow cytometry analysis.Front Microbiol2017;8:1343 PMCID:PMC5515857

[93]

Huggins AR.Incidence and properties of temperate bacteriophages induced from lactic streptococci.Appl Environ Microbiol1977;33:184-91 PMCID:PMC170620

[94]

Chen F,Binder BJ,Hodson RE.Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold.Appl Environ Microbiol2001;67:539-45 PMCID:PMC92618

[95]

Anderson B,Carter C.Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays.Bacteriophage2011;1:86-93 PMCID:PMC3278645

[96]

Marie D,Thyrhaug R,Vaulot D.Enumeration of marine viruses in culture and natural samples by flow cytometry.Appl Environ Microbiol1999;65:45-52 PMCID:PMC90981

[97]

Ho CH,Beatson SA,Turner MS.Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors.Int J Food Microbiol2016;220:26-32

[98]

Grath S, Fitzgerald GF, van Sinderen D. Bacteriophages in dairy products: pros and cons.Biotechnol J2007;2:450-5

[99]

Husson-Kao C,Cesselin B,Benbadis L.The Streptococcus thermophilus autolytic phenotype results from a leaky prophage.Appl Environ Microbiol2000;66:558-65 PMCID:PMC91863

[100]

O'Sullivan D,Fitzgerald GF.Investigation of the relationship between lysogeny and lysis of Lactococcus lactis in cheese using prophage-targeted PCR.Appl Environ Microbiol2000;66:2192-8 PMCID:PMC101472

[101]

Ladero V,Bascarán V,Alvarez MA.Identification of the repressor-encoding gene of the Lactobacillus bacteriophage A2.J Bacteriol1998;180:3474-6 PMCID:PMC107307

[102]

McGrath S,van Sinderen D.Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages.Mol Microbiol2002;43:509-20

[103]

Mahony J,Fitzgerald GF.Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes.Appl Environ Microbiol2008;74:6206-15 PMCID:PMC2570291

[104]

Ruiz-Cruz S,Erazo Garzon A.Lysogenization of a Lactococcal host with three distinct temperate phages provides homologous and heterologous phage resistance.Microorganisms2020;8:1685 PMCID:PMC7693887

[105]

Lopatina A,Sorek R.Abortive infection: bacterial suicide as an antiviral immune strategy.Annu Rev Virol2020;7:371-84

[106]

Chopin MC,Bidnenko E.Phage abortive infection in lactococci: variations on a theme.Curr Opin Microbiol2005;8:473-9

[107]

Pei Z,Han X.Identification, characterization, and phylogenetic analysis of eight new inducible prophages in Lactobacillus.Virus Res2020;286:198003

[108]

Tock MR.The biology of restriction and anti-restriction.Curr Opin Microbiol2005;8:466-72

[109]

Ventura M,Canchaya C.Comparative analyses of prophage-like elements present in two Lactococcus lactis strains.Appl Environ Microbiol2007;73:7771-80 PMCID:PMC2168057

[110]

Dedrick RM,Bustamante CA.Prophage-mediated defence against viral attack and viral counter-defence.Nat Microbiol2017;2:16251 PMCID:PMC5508108

[111]

Ramisetty BCM.Bacterial ‘Grounded’ prophages: hotspots for genetic renovation and innovation.Front Genet2019;10:65 PMCID:PMC6379469

[112]

Oh JH,Zhang S.Prophages in Lactobacillus reuteri are associated with fitness trade-offs but can increase competitiveness in the gut ecosystem.Appl Environ Microbiol2019;86:e01922-19 PMCID:PMC6912086

[113]

Townsend EM,Muscatt G.The human gut phageome: origins and roles in the human gut microbiome.Front Cell Infect Microbiol2021;11:643214 PMCID:PMC8213399

[114]

Lu Z,Plengvidhya V.Bacteriophage ecology in commercial sauerkraut fermentations.Appl Environ Microbiol2003;69:3192-202 PMCID:PMC161505

[115]

Jung JY,Kim JM.Metagenomic analysis of kimchi, a traditional Korean fermented food.Appl Environ Microbiol2011;77:2264-74 PMCID:PMC3067442

[116]

Göller PC,Rodriguez-Valera F,Gómez-Sanz E.Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil.Microbiome2020;8:17 PMCID:PMC7014677

[117]

Jung MJ,Yun JH.Viral community predicts the geographical origin of fermented vegetable foods more precisely than bacterial community.Food Microbiol2018;76:319-27

[118]

Dugat-Bony E,De Paepe M.Viral metagenomic analysis of the cheese surface: A comparative study of rapid procedures for extracting viral particles.Food Microbiol2020;85:103278

[119]

Thingstad TF.Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems.Limnol Oceanogr2000;45:1320-8

[120]

Wen R,Han G,Kong B.Fungal community succession and volatile compound dynamics in Harbin dry sausage during fermentation.Food Microbiol2021;99:103764

[121]

Świder O,Bujak M,Szczepańska M.Time evolution of microbial composition and metabolic profile for biogenic amines and free amino acids in a model cucumber fermentation system brined with 0.5% to 5.0% sodium chloride.Molecules2021;26:5796 PMCID:PMC8510100

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/