Bifidobacteria: insights into the biology of a key microbial group of early life gut microbiota

Francesca Turroni , Douwe van Sinderen , Marco Ventura

Microbiome Research Reports ›› 2021, Vol. 1 ›› Issue (1) : 2

PDF
Microbiome Research Reports ›› 2021, Vol. 1 ›› Issue (1) :2 DOI: 10.20517/mrr.2021.02
Review

Bifidobacteria: insights into the biology of a key microbial group of early life gut microbiota

Author information +
History +
PDF

Abstract

The establishment and development of the human gut microbiota constitutes a dynamic and non-random process, which involves positive and negative interactions between key microbial taxa and their host. Remarkably, these early life microbiota-host communications include key events with long-term health consequences. Bifidobacteria arguably represent the most emblematic microbial taxon of the infant gut microbiota. In this context, the interactions among bifidobacteria, their human host, and other members of the human gut microbiota are far from completely understood, despite the crucial role they play in the development and maintenance of human physiology and immune system. Here, we highlight the ecological as well as genetic and functional features of bifidobacteria residing in the human gut using genomic and ecology-based information.

Keywords

Infant gut microbiota / microbiome / probiotics

Cite this article

Download citation ▾
Francesca Turroni, Douwe van Sinderen, Marco Ventura. Bifidobacteria: insights into the biology of a key microbial group of early life gut microbiota. Microbiome Research Reports, 2021, 1(1): 2 DOI:10.20517/mrr.2021.02

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alessandri G,Ventura M.The genus bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: bifidobacterial adaptation to and interaction with the host.Comput Struct Biotechnol J2021;19:1472-87 PMCID:PMC7979991

[2]

Milani C,Mancabelli L.Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life.ISME J2017;11:2834-47 PMCID:PMC5702741

[3]

Lugli GA,Milani C.Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction.Environ Microbiol2021;23:3294-305 PMCID:PMC8359967

[4]

Lugli GA,Duranti S.Isolation of novel gut bifidobacteria using a combination of metagenomic and cultivation approaches.Genome Biol2019;20:96 PMCID:PMC6524291

[5]

Lugli GA,Milani C.Evolutionary development and co-phylogeny of primate-associated bifidobacteria.Environ Microbiol2020;22:3375-93

[6]

Lugli GA,Turroni F.Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics.Appl Environ Microbiol2014;80:6383-94 PMCID:PMC4178631

[7]

Duranti S,Napoli S.Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov.Int J Syst Evol Microbiol2019;69:1288-98

[8]

Lugli GA,Alessandri G.Phylogenetic classification of ten novel species belonging to the genus Bifidobacterium comprising B. phasiani sp. nov., B. pongonis sp. nov., B. saguinibicoloris sp. nov., B. colobi sp. nov., B. simiiventris sp. nov., B. santillanense sp. nov., B. miconis sp. nov., B. amazonense sp. nov., B. pluvialisilvae sp. nov., and B. miconisargentati sp. nov.Syst Appl Microbiol2021;44:126273

[9]

Milani C,Bottacini F.The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota.Microbiol Mol Biol Rev2017;81:e00036-17 PMCID:PMC5706746

[10]

Milani C,Lugli GA.Exploring vertical transmission of bifidobacteria from mother to child.Appl Environ Microbiol2015;81:7078-87 PMCID:PMC4579462

[11]

Duranti S,Mancabelli L.Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission.Microbiome2017;5:66 PMCID:PMC5485682

[12]

Duranti S,Milani C.Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbe-host co-evolution.Environ Microbiol2019;21:3683-95

[13]

Toda K,Satoh T.Neonatal oral fluid as a transmission route for bifidobacteria to the infant gut immediately after birth.Sci Rep2019;9:8692 PMCID:PMC6582144

[14]

Fehr K,Sbihi H.Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers' milk and the infant gut: the CHILD cohort study.Cell Host Microbe2020;28:285-297.e4

[15]

Ding M,Ross RP.Crosstalk between sIgA-coated bacteria in infant gut and early-life health.Trends Microbiol2021;29:725-35

[16]

Lugli GA,Turroni F.Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota.Environ Microbiol2016;18:2196-213

[17]

Milani C,Lugli GA.Tracing mother-infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX.Microbiome2018;6:145 PMCID:PMC6102903

[18]

Lugli GA,Milani C.Investigating bifidobacteria and human milk oligosaccharide composition of lactating mothers.FEMS Microbiol Ecol2020;96:fiaa049

[19]

Ruiz L,Rodriguez JM.Unfolding the human milk microbiome landscape in the Omics era.Front Microbiol2019;10:1378 PMCID:PMC6604669

[20]

Rodríguez JM.The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation?.Adv Nutr2014;5:779-84 PMCID:PMC4224214

[21]

Turroni F,Duranti S,van Sinderen D.Glycan utilization and cross-feeding activities by bifidobacteria.Trends Microbiol2018;26:339-50

[22]

Sakanaka M,Gotoh A.Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis.Sci Adv2019;5:eaaw7696 PMCID:PMC6713505

[23]

Schell MA,Snel B.The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract.Proc Natl Acad Sci U S A2002;99:14422-7 PMCID:PMC137899

[24]

Ventura M,Claesson MJ.Genome-scale analyses of health-promoting bacteria: probiogenomics.Nat Rev Microbiol2009;7:61-71

[25]

Ventura M,Tauch A.Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum.Microbiol Mol Biol Rev2007;71:495-548 PMCID:PMC2168647

[26]

Milani C,Duranti S.Genomic encyclopedia of type strains of the genus Bifidobacterium.Appl Environ Microbiol2014;80:6290-302 PMCID:PMC4178644

[27]

Milani C,Duranti S.Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut.Sci Rep2015;5:15782 PMCID:PMC4623478

[28]

Milani C,Duranti S.Genomics of the genus Bifidobacterium reveals species-specific adaptation to the Glycan-rich gut environment.Appl Environ Microbiol2016;82:980-91 PMCID:PMC4751850

[29]

Bottacini F,Turroni F.Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut.PLoS One2012;7:e44229 PMCID:PMC3447821

[30]

Turroni F,Pass DA.Diversity of bifidobacteria within the infant gut microbiota.PLoS One2012;7:e36957 PMCID:PMC3350489

[31]

Egan M,Kilcoyne M.Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium.BMC Microbiol2014;14:282 PMCID:PMC4252021

[32]

Gotoh A,Sakanaka M.Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.Sci Rep2018;8:13958 PMCID:PMC6143587

[33]

Turroni F,Duranti S.Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach.ISME J2016;10:1656-68 PMCID:PMC4918443

[34]

Turroni F,Duranti S.Bifidobacteria and the infant gut: an example of co-evolution and natural selection.Cell Mol Life Sci2018;75:103-18

[35]

Turroni F,Foroni E.Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions.Proc Natl Acad Sci U S A2013;110:11151-6 PMCID:PMC3703987

[36]

Turroni F,Mangifesta M.Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions.FEMS Microbiol Lett2014;357:23-33

[37]

Longhi G,Ventura M.Microbiota and cancer: the emerging beneficial role of bifidobacteria in cancer immunotherapy.Front Microbiol2020;11:575072 PMCID:PMC7507897

[38]

Alessandri G,MacSharry J,Ventura M.Bifidobacterial dialogue with its human host and consequent modulation of the immune system.Front Immunol2019;10:2348 PMCID:PMC6779802

[39]

Milani C,Mancabelli L.The sortase-dependent fimbriome of the genus Bifidobacterium: extracellular structures with potential to modulate microbe-host dialogue.Appl Environ Microbiol2017;83:e01295-17 PMCID:PMC5601332

[40]

Hall LJ.Bacterial strains augment cancer therapeutics.Nat Microbiol2021;6:275-6

[41]

Yoon Y,Jeon BN,Park H.Bifidobacterium strain-specific enhances the efficacy of cancer therapeutics in tumor-bearing mice.Cancers (Basel)2021;13:957 PMCID:PMC7956760

[42]

Lee SH,Yoon Y.Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice.Nat Microbiol2021;6:277-88

[43]

Sivan A,Hubert N.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.Science2015;350:1084-9 PMCID:PMC4873287

[44]

Zuo F,Marcotte H.Engineer probiotic bifidobacteria for food and biomedical applications - current status and future prospective.Biotechnol Adv2020;45:107654

[45]

Duranti S,Ventura M,Turroni F.Exploring the ecology of bifidobacteria and their genetic adaptation to the mammalian gut.Microorganisms2020;9:8 PMCID:PMC7822027

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/