Diuron is one of the most frequently applied herbicides in sugarcane farming in southern Japan, and Australia. In addition, it is used as a booster substance in copper-based antifouling paints. Due to these various uses, Diuron is released into the marine environment; however, little information is available on gene expression in corals and their symbiotic algae exposed to Diuron. We investigated the effects of Diuron on stress-responsive gene expression in the hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. After seven days of exposure to 1 µg/L and 10 µg/L Diuron, no significant changes in the body colour of corals were observed. However, quantitative reverse transcription–polymerase chain reaction analyses revealed that the expression levels of stress-responsive genes, such as heat shock protein 90 (HSP90), HSP70, and calreticulin (CALR), were significantly downregulated in corals exposed to 10 µg/L of Diuron for seven days. Moreover, aquaglyceroporin was significantly downregulated in corals exposed to environmentally relevant concentrations of 1 µg/L Diuron. In contrast, no such effects were observed on the expression levels of other stress-responsive genes, such as oxidative stress-responsive proteins, methionine adenosyltransferase, and green/red fluorescent proteins. Diuron exposure had no significant effect on the expression levels of HSP90, HSP70, or HSP40 in the symbiotic dinoflagellates. These results suggest that stress-responsive genes, such as HSPs, respond differently to Diuron in corals and their symbiotic dinoflagellates and that A. tenuis HSPs and CALRs may be useful molecular biomarkers for predicting stress responses induced by the herbicide Diuron.
One of the most diverse clades of ciliated protozoa, the class Spirotrichea, displays a series of unique characters in terms of eukaryotic macronuclear (MAC) genome, including high fragmentation that produces nanochromosomes. However, the genomic diversity and evolution of nanochromosomes and gene families for spirotrich MAC genomes are poorly understood. In this study, we assemble the MAC genome of a representative euplotid (a new model organism in Spirotrichea) species, Euplotes aediculatus. Our results indicate that: (a) the MAC genome includes 35,465 contigs with a total length of 97.3 Mb and a contig N50 of 3.4 kb, and contains 13,145 complete nanochromosomes and 43,194 predicted genes, with the majority of these nanochromosomes containing tiny introns and harboring only one gene; (b) genomic comparisons between E. aediculatus and other reported spirotrichs indicate that average GC content and genome fragmentation levels exhibit interspecific variation, and chromosome breaking sites (CBSs) might be lost during evolution, resulting in the increase of multi-gene nanochromosome; (c) gene families associated with chitin metabolism and FoxO signaling pathway are expanded in E. aediculatus, suggesting their potential roles in environment adaptation and survival strategies of E. aediculatus; and (d) a programmed ribosomal frameshift (PRF) with a conservative motif 5′-AAATAR-3′ tends to occur in longer genes with more exons, and PRF genes play an important role in many cellular regulation processes.
Hemorrhage control requires hemostatic materials that are both effective and biocompatible. Among these, diatom biosilica (DBs) could significantly improve hemorrhage control, but it induces hemolysis (the hemolysis rate > 5%). Thus, the purpose of this study was to explore the influence of Ca2+ biomineralization on DBs for developing fast hemostatic materials with a low hemolysis rate. Here, CaCl2 was added to the diatom medium under high light (cool white, fluorescent lamps, 67.5 µmol m−2 s−1), producing Ca-DBs-3 with a particle size of 40–50 μm and a Ca2+ content of Ca-DBs-3 obtained from the higher concentration CaCl2 group (6.7 mmol L−1) of 0.16%. The liquid absorption capacity of Ca-DBs-3 was 30.43 ± 0.57 times its dry weight; the in vitro clotting time was comparable to QuikClot® zeolite; the hemostatic time and blood loss using the rat tail amputation model were 36.40 ± 2.52 s and 0.39 ± 0.12 g, which were 40.72% and 19.50% of QuikClot® zeolite, respectively. Ca-DBs-3 showed no apparent toxicity to L929 cells (cell viability > 80%) and was non-hemolysis (the hemolysis rate < 2%). This study prepared Ca-DBs-3 with a rapid hemostatic effect and good biocompatibility, providing a path to develop diatom biosilica hemostatic materials.
Despite significant advances in the phylogenomics of bivalves over the past decade, the higher-level phylogeny of Imparidentia (a superorder of Heterodonta) remains elusive. Here, a total of five new mitochondrial sequences (Chama asperella, Chama limbula, Chama dunkeri, Barnea manilensis and Ctena divergens) was added to provide resolution in nodes that required additional study. Although the monophyly of Lucinida remains less clear, the results revealed the overall backbone of the Imparidentia tree and the monophyly of Imparidentia. Likewise, most relationships among the five major Imparidentia lineages—Lucinida, Cardiida, Adapedonta, Myida and Venerida—were addressed with a well-supported topology. Basal relationships of Imparidentia recovered Lucinidae as the sister group to all remaining imparidentian taxa. Thyasiridae is a sister group to other imparidentian bivalves (except Lucinidae species) which is split into Cardiida, Adapedonta and the divergent clade of Neoheterodontei. Neoheterodontei was comprised of Venerida and Myida, the former of which now also contains Chamidae as the sister group to all the remaining venerid taxa. Moreover, molecular divergence times were inferred by calibrating nine nodes in the Imparidentia tree of life by extinct taxa. The origin of these major clades ranged from Ordovician to Permian with the diversification through the Palaeozoic to Mesozoic. Overall, the results obtained in this study demonstrate a better-resolved Imparidentia phylogeny based on mitochondrial genomes.
During a study on the diversity of ciliated protists in Lake Weishan Wetland, the largest wetland in northern China, four epibiotic sessilid peritrichs were isolated from aquatic host animals. Two of them, i.e., Epistylis cambari Kellicott, 1885 and Epistylis lwoffi Fauré-Fremiet, 1943, were known species whereas the other two, i.e., Parapiosoma typicum gen. nov., sp. nov. and Orborhabdostyla gracilis sp. nov., are new to science. The new genus Parapiosoma gen. nov. is characterized by its branched non-contractile stalk, everted peristomial lip, obconical macronucleus and transverse silverlines. Two species are assigned to the new genus, namely Parapiosoma typicum sp. nov. and Parapiosoma gasterostei (Fauré-Fremiet, 1905) comb. nov. Morphologically, P. typicum sp. nov. is recognized by its goblet-shaped zooids, single-layered peristomial lip, dichotomously branched stalk, and infundibular polykinety 3 (P3) containing three equal-length rows. Orborhabdostyla gracilis sp. nov. is characterized by its slender zooid, curved macronucleus, and three equal-length rows in infundibular P3. Improved diagnoses and redescriptions of E. cambari and E. lwoffi are provided including, for the first time, data on the ciliature of E. cambari. Phylogenetic analyses based on SSU rDNA, ITS1-5.8S rDNA -ITS2, and LSU rDNA sequence data strongly support the assertion that the family Epistylididae comprises morphospecies with different evolutionary lineages and indicate that Parapiosoma gen. nov. may represent a new taxon at family level.
In mammals, mitofusin 2 (MFN2) is involved in mitochondrial fusion, and suppresses the virus-induced RIG-I-like receptor (RLR) signaling pathway. However, little is known about the function of MFN2 in non-mammalian species. In the present study, we cloned an MFN2 ortholog (LcMFN2) in large yellow croaker (Larimichthys crocea). Phylogenetic analysis showed that MFN2 emerged after the divergence of amphioxus and vertebrates. The protein sequences of MFN2 were well conserved from fish to mammals. LcMFN2 was expressed in all the tissues/organs examined at different levels, and its expression was upregulated in response to poly(I:C) stimulation. Overexpression of LcMFN2 inhibited MAVS-induced type I interferon (IFN) promoter activation and antiviral gene expression. In contrast, knockdown of endogenous LcMFN2 enhanced poly(I:C) induced production of type I IFNs. Additionally, LcMFN2 enhanced K48-linked polyubiquitination of MAVS, promoting its degradation. Also, overexpression of LcMFN2 impaired the cellular antiviral response, as evidenced by the increased expression of viral genes and more severe cytopathic effects (CPE) in cells infected with spring viremia of carp virus (SVCV). These results indicated that LcMFN2 inhibited type I IFN response by degrading MAVS, suggesting its negative regulatory role in cellular antiviral response. Therefore, our study sheds a new light on the regulatory mechanisms of the cellular antiviral response in teleosts.
Marine invertebrates serve as rich sources of secondary metabolites with intriguing chemical diversities and a wide spectrum of biological activities. Particularly, marine shell-less sacoglossan mollusks have attracted much attentions due to the fact that mollusks apply complex metabolites as chemical defense agents against to their predators. With the purpose of discovering bioactive secondary metabolites to develop marine-derived medicines from the South China Sea, we have conducted a chemical study on the photosynthetic mollusk Placobranchus ocellatus. As a result, seven new γ-pyrone polypropionates, namely ( ±)-ocellatuspyrone A (1), ( ±)-ocellatuspyrone B (2), and ocellatuspyrones C−G (5, 9−12), along with five known polypropionates, have been isolated and characterized from the South China Sea photosynthetic mollusk Placobranchus ocellatus. Extensive spectroscopic analysis, single crystal X-ray diffraction analysis, modified Mosher’s method, ECD comparison, CD exciton chirality method, TDDFT-ECD calculation, and chemical conversion were used to determine the structures and absolute configurations of the new compounds and the stereochemistry of undefined known compounds 4, 6 and 7. All these isolated polypropionates were evaluated in bioassays for their biological activities, including antibacterial, neuroprotective effect, anti-inflammatory, PTP1B inhibitory, and antiviral activities. Compounds 7, 8 and 11 were found for the first time to show antibacterial activity against fish pathogenic bacteria Streptococcus parauberis (the main pathogen causing fish streptococcal infections and acute death) with MIC values of 35.8, 34.2, and 37.4 μg/mL, respectively, which might be potential novel antibacterial agents for the treatment of fish infectious diseases.
Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food, medicine, and cosmetics industries. However, the specific structure–function relationships of carrageenan oligosaccharides are not clearly described due to the deficiency of high specific carrageenases. Here, a truncated mutant OUC-FaKC16Q based on the reported κ-neocarratetrose (Nκ4)-producing κ-carrageenase OUC-FaKC16A from Flavobacterium algicola was constructed and further studied. After truncating the C-terminal Por_Secre_tail (PorS) domain (responsible for substrate binding), the catalytic efficiency and temperature stability decreased to a certain extent. Surprisingly, this truncation also enabled OUC-FaKC16Q to hydrolyze Nκ4 into κ-neocarrabiose (Nκ2). The offset of Arg265 residue in OUC-FaKC16Q may explain this change. Moreover, the high catalytic abilities, the main products, and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated. Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)2 and DA-G-DA-G4S, respectively. As a result, the spectrum of products of κ-carrageenase OUC-FaKC16A has been fully expanded in this study, indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specific structures.
Many marine bacteria are difficult to culture because they are dormant, rare or found in low-abundances. Enrichment culturing has been widely tested as an important strategy to isolate rare or dormant microbes. However, many more mechanisms remain uncertain. Here, based on 16S rRNA gene high-throughput sequencing and metabolomics technology, it was found that the short-chain fatty acids (SCFAs) in metabolites were significantly correlated with uncultured bacterial groups during enrichment cultures. A pure culture analysis showed that the addition of SCFAs to media also resulted in high efficiency for the isolation of uncultured strains from marine sediments. As a result, 238 strains belonging to 10 phyla, 26 families and 82 species were successfully isolated. Some uncultured rare taxa within Chlorobi and Kiritimatiellaeota were successfully cultured. Amongst the newly isolated uncultured microbes, most genomes, e.g. bacteria, possess SCFA oxidative degradation genes, and these features might aid these microbes in better adapting to the culture media. A further resuscitation analysis of a viable but non-culturable (VBNC) Marinilabiliales strain verified that the addition of SCFAs could break the dormancy of Marinilabiliales in 5 days, and the growth curve test showed that the SCFAs could shorten the lag phase and increase the growth rate. Overall, this study provides new insights into SCFAs, which were first studied as resuscitation factors in uncultured marine bacteria. Thus, this study can help improve the utilisation and excavation of marine microbial resources, especially for the most-wanted or key players.
Understanding consistencies and discrepancies in characterizing diversity and quantity of phytoplankton is essential for better modeling ecosystem change. In this study, eukaryotic phytoplankton in the Pearl River Estuary, South China Sea were investigated using nuclear 18S rRNA and plastid 16S or 23S rRNA genes and pigment analysis. It was found that 18S abundance poorly explained the variations in total chlorophyll a (Chl-a). However, the ratios of log-transformed 18S abundance to Chl-a in the major phytoplankton groups were generally environment dependent, suggesting that the ratio has potential as an indicator of the physiological state of phytoplankton. The richness of 18S-based operational taxonomic units was positively correlated with the richness of 16S-based amplicon sequence variants of the whole phytoplankton community, but insignificant or weak for individual phytoplankton groups. Overall, the 18S based, rather than the 16S based, community structure had a greater similarity to pigment-based estimations. Relative to the pigment data, the proportion of haptophytes in the 18S dataset, and diatoms and cryptophytes in the 16S dataset, were underestimated. This study highlights that 18S metabarcoding tends to reflect biomass-based community organization of eukaryotic phytoplankton. Because there were lower copy numbers of plastid 16S than 18S per genome, metabarcoding of 16S probably approximates cell abundance-based community organization. Changes in biomass organization of the pigment-based community were sensitive to environmental changes. Taken together, multiple methodologies are recommended to be applied to more accurately profile the diversity and community composition of phytoplankton in natural ecosystems.