Chemical interactions between kelp Macrocystis pyrifera and symbiotic bacteria under elevated CO2 condition

Xiaowen Zhang, Tianle Xi, Yitao Wang, Xiao Fan, Dong Xu, Pengyan Zhang, Ke Sun, Yan Zhang, Jian Ma, Naihao Ye

Marine Life Science & Technology ›› 2024

Marine Life Science & Technology ›› 2024 DOI: 10.1007/s42995-024-00259-5
Research Paper

Chemical interactions between kelp Macrocystis pyrifera and symbiotic bacteria under elevated CO2 condition

Author information +
History +

Abstract

Kelps are pivotal to temperate coastal ecosystems, providing essential habitat and nutrients for diverse marine life, and significantly enhancing local biodiversity. The impacts of elevated CO2 levels on kelps may induce far-reaching effects throughout the marine food web, with potential consequences for biodiversity and ecosystem functions. This study considers the kelp Macrocystis pyrifera and its symbiotic microorganisms as a holistic functional unit (holobiont) to examine their collective response to heightened CO2 levels. Over a 4 month cultivation from the fertilization of M. pyrifera gametes to the development of juvenile sporophytes, our findings reveal that elevated CO2 levels influence the structure of the M. pyrifera symbiotic microbiome, alter metabolic profiles, and reshape microbe-metabolite interactions using 16S rRNA amplicon sequencing and liquid chromatography coupled to mass spectrometry analysis. Notably, Dinoroseobacter, Sulfitobacter, Methylotenera, Hyphomonas, Milano-WF1B-44 and Methylophaga were selected as microbiome biomarkers, which showed significant increases in comparative abundance with elevated CO2 levels. Stress-response molecules including fatty-acid metabolites, oxylipins, and hormone-like compounds such as methyl jasmonate and prostaglandin F2a emerged as critical metabolomic indicators. We propose that elevated CO2 puts certain stress on the M. pyrifera holobiont, prompting the release of these stress-response molecules. Moreover, these molecules may aid the kelp’s adaptation by modulating the microbial community structure, particularly influencing potential pathogenic bacteria, to cope with environmental change. These results will enrich the baseline data related to the chemical interactions between the microbiota and M. pyrifera and provide clues for predicting the resilience of kelps to future climate change.

Cite this article

Download citation ▾
Xiaowen Zhang, Tianle Xi, Yitao Wang, Xiao Fan, Dong Xu, Pengyan Zhang, Ke Sun, Yan Zhang, Jian Ma, Naihao Ye. Chemical interactions between kelp Macrocystis pyrifera and symbiotic bacteria under elevated CO2 condition. Marine Life Science & Technology, 2024 https://doi.org/10.1007/s42995-024-00259-5

References

[]
AdouaneE, MercierC, MamelleJ, WillocquetE, IntertagliaL, Burgunter-DelamareB, LeblancC, RousvoalS, LamiR, PradoS. Importance of quorum sensing crosstalk in the brown alga Saccharina latissima epimicrobiome. iScience, 2024, 27: 109176
CrossRef Google scholar
[]
AmeyeM, AllmannS, VerwaerenJ, SmaggheG, HaesaertG, SchuurinkRC, AudenaertK. Green leaf volatile production by plants: a meta-analysis. New Phytol, 2017, 220: 666-683
CrossRef Google scholar
[]
BolyenE, RideoutJR, DillonMR, BokulichNA, AbnetCC, Al-GhalithGA, AlexanderH, AlmEJ, ArumugamM, AsnicarF, BaiY, BisanzJE, BittingerK, BrejnrodA, BrislawnCJ, BrownCT, CallahanBJ, Caraballo-RodríguezAM, ChaseJ, CopeEK, et al. . Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019, 37: 852-857
CrossRef Google scholar
[]
BulgarelliD, RottM, SchlaeppiK, ThemaatEV, AhmadinejadN, AssenzaF, RaufP, HuettelB, ReinhardtR, SchmelzerE, PepliesJ, GloecknerFO, AmannR, EickhorstT, Schulze-LefertP. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488: 91-95
CrossRef Google scholar
[]
Burgunter-DelamareB, RousvoalS, LegeayE, TanguyG, FredriksenS, BoyenC, DittamiSM. The Saccharina latissima microbiome: effects of region, season, and physiology. Front Microbiol, 2022, 13: 1050939
CrossRef Google scholar
[]
CallahanBJ, McMurdiePJ, RosenMJ, HanAW, JohnsonAJ, DadaSH. High-resolution sample inference from illumina amplicon data. Nat Methods, 2016, 13: 581-583
CrossRef Google scholar
[]
ChenS, ZhouY, ChenY, GuJ. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: 884-890
CrossRef Google scholar
[]
ChenH, YangR, ChenJ, LuoQ, CuiX, YanX, GerwickWH. 1-Octen-3-ol, a self-stimulating oxylipin messenger, can prime and induce defense of marine alga. BMC Plant Biol, 2019, 19: 1-16
[]
ChowdhuryMT, ChoJ, AhnDH, HongY. Methyl jasmonate enhances phlorotannin production in the brown seaweed Ecklonia cava. J Appl Phycol, 2015, 27: 1651-1656
CrossRef Google scholar
[]
DaytonPK. Ecology of kelp communities. Annu Rev Ecol Evol S, 1985, 16: 215-245
CrossRef Google scholar
[]
DescampsV, ColinS, LahayeM, JamM, RichardC, PotinP, BarbeyronT, YvinJC, KloaregB. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol, 2006, 8: 27-39
CrossRef Google scholar
[]
DittamiSM, Duboscq-BidotL, PerennouM, GobetA, CorreE, BoyenC, TononT. Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. ISME J, 2016, 10: 51-63
CrossRef Google scholar
[]
DongS, YangJ, ZhangX, ShiM, SongX, ChenX, ZhangY. Cultivable alginate lyase-excreting bacteria associated with the arctic brown alga Laminaria. Mar Drugs, 2012, 10: 2481-2491
CrossRef Google scholar
[]
DouglasGM, MaffeiVJ, ZaneveldJR, YurgelSN, BrownJR, TaylorCM, HuttenhowerC, LangilleMG. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol, 2020, 38: 685-688
CrossRef Google scholar
[]
EdwardsBR, BidleKD, Van MooyBA. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: implications for the carbon cycle. Proc Natl Acad Sci USA, 2015, 112: 5909-5914
CrossRef Google scholar
[]
EganS, HarderT, BurkeC, SteinbergP, KjellebergS, ThomasT. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev, 2013, 37: 462-476
CrossRef Google scholar
[]
FunkCD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294: 1871-1875
CrossRef Google scholar
[]
Gaitan-EspitiaJD, HancockJR, Padilla-GaminoJL, RivestbEB, BlanchettecCA, ReedcDC, HofmannGE. Interactive effects of elevated temperature and pCO2 on early-life history stages of the giant kelp Macrocystis pyrifera. J Exp Mar Biol Ecol, 2014, 457: 51-58
CrossRef Google scholar
[]
GaoK, GaoG, WangY, DupontS. Impacts of ocean acidifcation under multiple stressors on typical organisms and ecological processes. Mar Life Sci Tech, 2020, 3: 279-291
CrossRef Google scholar
[]
GoeckeF, LabesA, WieseJ, ImhoffJ. Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser, 2010, 409: 267-299
CrossRef Google scholar
[]
GoulitquerS, RitterA, ThomasF, FerecC, SalaünJP, PotinP. Release of volatile aldehydes by the brown algal kelp Laminaria digitata in response to both biotic and abiotic stress. ChemBioChem, 2009, 10: 977-982
CrossRef Google scholar
[]
GrahamMH, FoxMD, HamiltSL. EmilO. Macrophyte productivity and the provisioning of energy and habitat to nearshore systems. Marine macrophytes as foundation species, 2016 Boca Raton CRC Press 133-152
CrossRef Google scholar
[]
HarleyCD, Randall HughesA, HultgrenKM, MinerBG, SorteCJ, ThornberCS, RodriguezLF, TomanekL, WilliamsSL. The impacts of climate change in coastal marine systems. Ecol Lett, 2006, 9: 228-241
CrossRef Google scholar
[]
HollantsJ, LeliaertF, De ClerckO, WillemsA. What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol, 2013, 83: 1-16
CrossRef Google scholar
[]
HonkanenT, JormalainenV. Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia, 2005, 144: 196-205
CrossRef Google scholar
[]
KimHT, ChungJH, WangD, LeeJ, WooHC, ChoiI, KimKH. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2–40. Appl Microbiol Biotechnol, 2012, 93: 2233-2239
CrossRef Google scholar
[]
KroekerKJ, KordasRL, CrimRN, SinghGG. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett, 2010, 13: 1419-1434
CrossRef Google scholar
[]
KroekerKJ, KordasRL, CrimRN, HendriksIE, RamajoL, SinghGS, DuarteCM, GattusoJP. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol, 2013, 19: 1884-1896
CrossRef Google scholar
[]
KumariP, ReddyCR, JhaB. Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant Cell Physiol, 2015, 56: 1877-1889
CrossRef Google scholar
[]
KüpperFC, GaquerelE, CosseA, AdasF, PetersAF, MüllerDG, KloaregB, SalaünJP, PotinP. Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol, 2009, 50: 789-800
CrossRef Google scholar
[]
LiJ, MajzoubME, MarzinelliEM, DaiZ, ThomasT, EganS. Bacterial controlled mitigation of dysbiosis in a seaweed disease. ISME J, 2022, 16: 378-387
CrossRef Google scholar
[]
MaM, ZhuangY, ChangL, XiaoL, LinQ, QiuQ, ChenD, EganS, WangG. Naturally occurring beneficial bacteria Vibrio alginolyticus X-2 protects seaweed from bleaching disease. Mbio, 2023, 14: e0006523
CrossRef Google scholar
[]
MagočT, SalzbergSL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27: 2957-2963
CrossRef Google scholar
[]
MartinM, BarbeyronT, MartinR, PortetelleD, MichelG, VandenbolM. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front Microbiol, 2015, 6: 1487
CrossRef Google scholar
[]
MinichJJ, MorrisMM, BrownM, DoaneMP, EdwardsMS, MichaelTP, DinsdaleEA. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS ONE, 2018, 13: e0192772
CrossRef Google scholar
[]
OulhenN, SchulzBJ, CarrierTJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis, 2016, 69: 131-139
CrossRef Google scholar
[]
PaixB, CarriotN, Barry-MartinetR, GreffS, MissonB, BriandJF, CulioliG. A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the thallus of a Mediterranean seaweed holobiont. Front Microbiol, 2020, 11: 513999
CrossRef Google scholar
[]
RenC, LiuZ, WangX, QinS. The seaweed holobiont: from microecology to biotechnological applications. Microb Biotechnol, 2022, 15: 738-754
CrossRef Google scholar
[]
RenY, YuG, ShiC, LiuL, GuoQ, HanC, ZhangD, ZhangL, LiuB, GaoH, ZengJ, ZhouY, QiuY, WeiJ, LuoY, ZhuF, LiX, WuQ, LiB, FuW, et al. . Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses. Imeta, 2022, 1: e12
CrossRef Google scholar
[]
RoledaMY, MorrisJN, McGrawCM, HurdCL. Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biol, 2012, 18: 854-864
CrossRef Google scholar
[]
RothMS, DeheynDD. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rep UK, 2013, 3: 1421
CrossRef Google scholar
[]
SawabeT, MakinoH, TatsumiM, NakanoK, TajimaK, IqbalMM, YumotoI, EzuraY, ChristenR. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol, 1998, 48: 769-774
CrossRef Google scholar
[]
ScalaA, AllmannS, MirabellaR, HaringMA, SchuurinkmRC. Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci, 2013, 14: 17781-17811
CrossRef Google scholar
[]
SchlossPD, WestcottSL, RyabinT, HallJR, HartmannM, HollisterEB, LesniewskiRA, OakleyBB, ParksDH, RobinsonCJ, SahlJW, StresB, ThallingerGG, Van HornD, WeberCF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009, 75: 7537-7541
CrossRef Google scholar
[]
SchmidtR, SahaM. Infochemicals in terrestrial plants and seaweed holobionts: current and future trends. New Phytol, 2020, 229: 1852-1860
CrossRef Google scholar
[]
SegataN, IzardJ, WaldronL, GeversD, MiropolskyL, GarrettWS, HuttenhowerC. Metagenomic biomarker discovery and explanation. Genome Biol, 2011, 12: R60
CrossRef Google scholar
[]
SinghRP, SinghRP, ReddyC, ReddyC. Unraveling the functions of the macroalgal microbiome. Front Microbiol, 2016, 6: 1488
CrossRef Google scholar
[]
SteneckRS, GrahamMH, BourqueBJ, CorbettD, ErlandsonJM, EstesJA, TegnerMJ. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv, 2002, 29: 436-459
CrossRef Google scholar
[]
StittM. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ, 1991, 14: 741-762
CrossRef Google scholar
[]
VairappanCS, SuzukiM, MotomuraT, IchimuraT. Pathogenic bacteria associated with lesions and thallus bleaching symptoms in the Japanese kelp Laminaria religiosa Miyabe (Laminariales, Phaeophyceae). Hydrobiologia, 2001, 445: 183-191
CrossRef Google scholar
[]
van der LoosLM, ErikssonBK, Falcão SallesJ. The macroalgal holobiont in a changing sea. Trends Microbiol, 2019, 27: 635-650
CrossRef Google scholar
[]
Wagner-DöblerI, BallhausenB, BergerM, BrinkhoffT, BuchholzI, BunkB, CypionkaH, DanielR, DrepperT, GerdtsG, HahnkeS, HanC, JahnD, KalhoeferD, KissH, KlenkH, KyrpidesNC, LieblW, LiesegangH, MeinckeLJ, et al. . The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J, 2010, 4: 61-77
CrossRef Google scholar
[]
WahlM, GoeckeF, LabesA, DobretsovS, WeinbergerF. The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol, 2012, 3: 31139
CrossRef Google scholar
[]
WangG, RenY, WangS, HouM, WeinbergerF. Shifting chemical defence or novel weapons? A review of defence traits in Agarophyton vermiculophyllum and other invasive seaweeds. Mar Life Sci Technol, 2022, 4: 138-149
CrossRef Google scholar
[]
WeberH. Fatty acid-derived signals in plants. Trends Plant Sci, 2002, 7: 217-224
CrossRef Google scholar
[]
WeinbergerF, FriedlanderM. Endogenous and exogenous elicitors of a hypersensitive response in Gracilaria conferta (Rhodophyta). J Appl Phycol, 2000, 12: 139-145
CrossRef Google scholar
[]
WestermeierR, PatiñoD, PielMI, MaierI, MüllerDG. A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquac Res, 2006, 37: 164-171
CrossRef Google scholar
[]
XuD, WangD, LiB, FanX, ZhangXW, YeNH, WangY, MouS, ZhuangZ. Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development. Environ Sci Technol, 2015, 49: 3548-3556
CrossRef Google scholar
[]
ZambounisA, GaquerelE, StrittmatterM, SalaünJP, PotinP, KüpperFC. Prostaglandin A2 triggers a strong oxidative burst in Laminaria: a novel defense inducer in brown algae?. Algae, 2012, 27: 21-32
CrossRef Google scholar
[]
ZhangX, ZhangJ, WangY, XuD, FanX, ZhangY, MaJ, YeN. The oxylipin messenger 1-octen-3-ol induced rapid responses in kelp Macrocystis pyrifera. Physiol Plant, 2021, 172: 1641-1652
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/