Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area

Zhixin Zhang, Jinxin Zhou, Jorge García Molinos, Stefano Mammola, Ákos Bede-Fazekas, Xiao Feng, Daisuke Kitazawa, Jorge Assis, Tianlong Qiu, Qiang Lin

Marine Life Science & Technology ›› 2024, Vol. 6 ›› Issue (2) : 349-362. DOI: 10.1007/s42995-024-00226-0
Research Paper

Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area

Author information +
History +

Abstract

Correlative species distribution models (SDMs) are important tools to estimate species’ geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species’ physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a naïve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models’ sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with naïve models, the physiologically informed models successfully captured the negative influence of high temperature on A. japonicus and were less sensitive to the choice of calibration area. The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available.

Keywords

Bayesian approach / Climate change / Habitat suitability / Physiological knowledge / Species distribution model

Cite this article

Download citation ▾
Zhixin Zhang, Jinxin Zhou, Jorge García Molinos, Stefano Mammola, Ákos Bede-Fazekas, Xiao Feng, Daisuke Kitazawa, Jorge Assis, Tianlong Qiu, Qiang Lin. Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area. Marine Life Science & Technology, 2024, 6(2): 349‒362 https://doi.org/10.1007/s42995-024-00226-0

References

[1]
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 2015, 38: 541-545,
CrossRef Google scholar
[2]
Álvarez-Noriega M, Burgess SC, Byers JE, Pringle JM, Wares JP, Marshall DJ. Global biogeography of marine dispersal potential. Nat Ecol Evol, 2020, 4: 1196-1203,
CrossRef Google scholar
[3]
Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R, Garcia RA, Guisan A, Maiorano L, Naimi B, O’Hara RB, Zimmermann NE, Rahbek C (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5:eaat4858
[4]
Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O. Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr, 2018, 27: 277-284,
CrossRef Google scholar
[5]
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol Evol, 2012, 3: 327-338,
CrossRef Google scholar
[6]
Barbet-Massin M, Thuiller W, Jiguet F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?. Ecography, 2010, 33: 878-886,
CrossRef Google scholar
[7]
Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model, 2011, 222: 1810-1819,
CrossRef Google scholar
[8]
Basher Z, Bowden DA, Costello MJ (2018) Global marine environment datasets (GMED) version 2.0 (Rev.02.2018). http://gmed.auckland.ac.nz
[9]
Bayes T (1764) An essay toward solving a problem in the doctrine of chances. Biometrika 45:296–315
[10]
Bosch S, Tyberghein L, Deneudt K, Hernandez F, De Clerck O. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Divers Distrib, 2018, 24: 144-157,
CrossRef Google scholar
[11]
Brewer MJ, O’Hara RB, Anderson BJ, Ohlemüller R. Plateau: a new method for ecologically plausible climate envelopes for species distribution modelling. Methods Ecol Evol, 2016, 7: 1489-1502,
CrossRef Google scholar
[12]
Brito-Morales I, Schoeman DS, García Molinos J, Burrows MT, Klein CJ, Arafeh-Dalmau N, Kaschner K, Garilao C, Kesner-Reyes K, Richardson AJ. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat Clim Change, 2020, 10: 576-581,
CrossRef Google scholar
[13]
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Bio Rev, 2014, 89: 406-426,
CrossRef Google scholar
[14]
Castro P, Huber ME. . Marine biology, 2005 Boston McGraw-Hill 64-84
[15]
Champion C, Hobday AJ, Pecl GT, Tracey SR. Oceanographic habitat suitability is positively correlated with the body condition of a coastal-pelagic fish. Fish Oceanogr, 2020, 29: 100-110,
CrossRef Google scholar
[16]
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333: 1024-1026,
CrossRef Google scholar
[17]
Cheung WW, Watson R, Pauly D. Signature of ocean warming in global fisheries catch. Nature, 2013, 497: 365-368,
CrossRef Google scholar
[18]
China Fishery Statistical Yearbook (2020) Ministry of Agriculture China Agriculture Press, Beijing, pp 22–50
[19]
Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40: 774-787,
CrossRef Google scholar
[20]
Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD. Climate change impacts on marine ecosystems. Annu Rev Mar Sci, 2012, 4: 11-37,
CrossRef Google scholar
[500]
Dong Y, Bao M, Cheng J, Chen Y, Du J, Gao Y, Hu L, Li X, Liu C, Qin G, Sun J, Wang X, Yang G, Zhang C, Zhang X, Zhang Y, Zhang Z, Zhan A, He Q, Sun J et al (2024) Advances of marine biogeography in China: species distribution model and its applications. Biodivers Sci. https://doi.org/10.17520/biods.2023453 (in Chinese with English abstract)
[21]
Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol, 2008, 45: 1029-1039,
CrossRef Google scholar
[22]
Feng X, Liang Y, Gallardo B, Papeş M. Physiology in ecological niche modeling: using zebra mussel’s upper thermal tolerance to refine model predictions through Bayesian analysis. Ecography, 2020, 43: 270-282,
CrossRef Google scholar
[23]
Feng X, Park DS, Walker C, Peterson AT, Merow C, Papeş M. A checklist for maximizing reproducibility of ecological niche models. Nat Ecol Evol, 2019, 3: 1382-1395,
CrossRef Google scholar
[24]
Gaines SD, Costello C, Owashi B, Mangin T, Bone J, García Molinos J, Burden M, Dennis H, Halpern BS, Kappel CV, Kleisner KM, Ovando D (2018) Improved fisheries management could offset many negative effects of climate change. Sci Adv 4:eaao1378
[25]
Gamliel I, Buba Y, Guy-Haim T, Garval T, Willette D, Rilov G, Belmaker J. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography, 2020, 43: 1090-1106,
CrossRef Google scholar
[26]
García Molinos J, Burrows MT, Poloczanska ES. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci Rep, 2017, 7: 1332,
CrossRef Google scholar
[27]
Golding N, Purse BV. Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol Evol, 2016, 7: 598-608,
CrossRef Google scholar
[28]
Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett, 2005, 8: 993-1009,
CrossRef Google scholar
[29]
Guisan A, Thuiller W, Zimmermann NE. . Habitat suitability and distribution models: with applications in R, 2017 Cambridge Cambridge University Press 811,
CrossRef Google scholar
[30]
Hamel JF, Mercier A (2013) Apostichopus japonicus. The IUCN red list of threatened species 2013: e.T180424A1629389. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T180424A1629389.en. Downloaded on 14 June 2021
[31]
Hamel JF, Sun J, Gianasi BL, Montgomery EM, Kenchington EL, Burel B, Rowe S, Winger PD, Mercier A. Active buoyancy adjustment increases dispersal potential in benthic marine animals. J Anim Ecol, 2019, 88: 820-832,
CrossRef Google scholar
[32]
Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. Evaluating the ability of habitat suitability models to predict species presences. Ecol Model, 2006, 199: 142-152,
CrossRef Google scholar
[33]
Hof C (2021) Towards more integration of physiology, dispersal and land-use change to understand the responses of species to climate change. J Exp Biol 224:jeb238352
[34]
Hu ZM, Zhang QS, Zhang J, Kass JM, Mammola S, Fresia P, Draisma SGA, Assis J, Jueterbock A, Yokota M, Zhang Z. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol Ecol, 2021, 30: 3840-3855,
CrossRef Google scholar
[35]
Hughes AC, Orr MC, Ma K, Costello MJ, Waller J, Provoost P, Yang Q, Zhu C, Qiao H. Sampling biases shape our view of the natural world. Ecography, 2021, 44: 1-11,
CrossRef Google scholar
[36]
IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES
[37]
Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett, 2009, 12: 334-350,
CrossRef Google scholar
[38]
Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton JA, Marshall AJ, Semiadi G, Rustam R, Bernard H, et al.. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib, 2013, 19: 1366-1379,
CrossRef Google scholar
[39]
Lapointe BE, Tomasko DA, Matzie WR. Eutrophication and trophic state classification of seagrass communities in the Florida Keys. B Mar Sci, 1994, 54: 696-717
[40]
Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G. Species better track climate warming in the oceans than on land. Nat Ecol Evol, 2020, 4: 1044-1059,
CrossRef Google scholar
[41]
Leroy B, Delsol R, Hugueny B, Meynard CN, Barhoumi C, Barbet-Massin M, Bellard C. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr, 2018, 45: 1994-2002,
CrossRef Google scholar
[42]
Levin LA, Le Bris N. The deep ocean under climate change. Science, 2015, 350: 766-768,
CrossRef Google scholar
[43]
Liao M, Li G, Wang J, Marshall DJ, Hui TY, Ma S, Zhang Y, Helmuth B, Dong Y. Physiological determinants of biogeography: the importance of metabolic depression to heat tolerance. Glob Change Biol, 2021, 27: 2561-2579,
CrossRef Google scholar
[44]
Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr, 2008, 17: 145-151,
CrossRef Google scholar
[45]
Mammola S, Cardoso P, Culver DC, Deharveng L, Ferreira R, Fišer C, Galassi DM, Griebler C, Halse SA, Humphreys W, Isaia M, Malard F, Martínez A, Moldovan OT, Niemiller ML, Pavlek M, Reboleira AS, Souza-Silva M, Teeling EC, Wynne J, et al.. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience, 2019, 69: 641-650,
CrossRef Google scholar
[46]
Mammola S, Milano F, Vignal M, Andrieu J, Isaia M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Glob Ecol Biogeogr, 2019, 28: 1325-1335,
CrossRef Google scholar
[47]
Mammola S, Pétillon J, Hacala A, Monsimet J, Marti SL, Cardoso P, Lafage D. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Divers Distrib, 2021, 27: 2596-2614,
CrossRef Google scholar
[48]
Marcer A, Haston EM, Groom QJ, Ariño AH, Chapman A, Bakken T, Braun P, Dillen M, Ernst M, Escobar A, Fichtmüller D, Livermore L, Nicolson N, Paragamian K, Paul DL, Pettersson LB, Phillips S, Plummer J, Rainer H, Rey I, et al.. Quality issues in georeferencing: from physical collections to digital data repositories for ecological research. Divers Distrib, 2021, 27: 564-567,
CrossRef Google scholar
[49]
Miller JA, Holloway P. Incorporating movement in species distribution models. Prog Phys Geog, 2015, 39: 837-849,
CrossRef Google scholar
[50]
Miller CB, Wheeler PA. . Biological oceanography, 2012 2 Chichester Wiley-Blackwell 588-637
[51]
Minami K, Masuda R, Takahashi K, Sawada H, Shirakawa H, Yamashita Y. Seasonal and interannual variation in the density of visible Apostichopus japonicus (Japanese sea cucumber) in relation to sea water temperature. Estuar Coast Shelf Sci, 2019, 229,
CrossRef Google scholar
[52]
Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling?. Ecography, 2014, 37: 191-203,
CrossRef Google scholar
[53]
Pan Y, Zhang L, Lin C, Sun J, Kan R, Yang H. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus. Physiol Behav, 2015, 144: 52-59,
CrossRef Google scholar
[54]
Peters KJ, Stockin KA, Saltré F. On the rise: Climate change in New Zealand will cause sperm and blue whales to seek higher latitudes. Ecol Indic, 2022, 142,
CrossRef Google scholar
[55]
Peterson AT, Papeş M, Soberón J. Mechanistic and correlative models of ecological niches. Eur J Ecol, 2015, 1: 28-38,
CrossRef Google scholar
[56]
Pinsky ML, Selden RL, Kitchel ZJ. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu Rev Mar Sci, 2020, 12: 153-179,
CrossRef Google scholar
[57]
Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. Marine taxa track local climate velocities. Science, 2013, 341: 1239-1242,
CrossRef Google scholar
[58]
Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding JM, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Thompson SA, Richardson AJ. Global imprint of climate change on marine life. Nat Clim Change, 2013, 3: 919-925,
CrossRef Google scholar
[59]
Poloczanska ES, Burrows MT, Brown CJ, García Molinos J, Halpern BS, Hoegh-Guldberg O, Kappel CV, Moore PJ, Richardson AJ, Schoeman DS, Sydeman WJ. Responses of marine organisms to climate change across oceans. Front Mar Sci, 2016, 3: 62,
CrossRef Google scholar
[60]
Potts WM, Henriques R, Santos CV, Munnik K, Ansorge I, Dufois F, Booth AJ, Kirchner CH, Sauer WH, Shaw PW. Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species. Glob Change Biol, 2014, 20: 2765-2777,
CrossRef Google scholar
[61]
Qiao H, Soberon J, Peterson AT. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol, 2015, 6: 1126-1136,
CrossRef Google scholar
[62]
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
[63]
Ryo M, Angelov B, Mammola S, Kass JM, Benito BM, Hartig F. Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography, 2021, 44: 199-205,
CrossRef Google scholar
[64]
Sánchez-Fernández D, Lobo JM, Hernández-Manrique OL. Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Divers Distrib, 2011, 17: 163-171,
CrossRef Google scholar
[65]
Santini L, Benítez-López A, Maiorano L, Čengić M, Huijbregts MA. Assessing the reliability of species distribution projections in climate change research. Divers Distrib, 2021, 27: 1035-1050,
CrossRef Google scholar
[66]
Selin NI. Vertical distribution of the far east trepang Apostichopus japonicus in Vostok Bay, Sea of Japan. Russ J Mar Biol, 2001, 27: 256-258,
CrossRef Google scholar
[67]
Smith AB, Santos MJ. Testing the ability of species distribution models to infer variable importance. Ecography, 2020, 43: 1801-1813,
CrossRef Google scholar
[68]
Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang HH, Warren D. Niche estimation above and below the species level. Trends Ecol Evol, 2019, 34: 260-273,
CrossRef Google scholar
[69]
So JJ, Uthicke S, Hamel JF, Mercier A. Genetic population structure in a commercial marine invertebrate with long-lived lecithotrophic larvae: Cucumaria frondosa (Echinodermata: Holothuroidea). Mar Biol, 2011, 158: 859-870,
CrossRef Google scholar
[70]
Somodi I, Lepesi N, Botta-Dukát Z. Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecol Evol, 2017, 7: 863-872,
CrossRef Google scholar
[71]
Stephenson F, Goetz K, Sharp BR, Mouton TL, Beets FL, Roberts J, MacDiarmid AB, Constantine R, Lundquist CJ. Modelling the spatial distribution of cetaceans in New Zealand waters. Divers Distrib, 2020, 26: 495-516,
CrossRef Google scholar
[72]
Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw, 2005, 12: 1-16,
CrossRef Google scholar
[73]
Sun XJ, Li Q, Kong LF. Comparative mitochondrial genomics within sea cucumber (Apostichopus japonicus): provide new insights into relationships among color variants. Aquaculture, 2010, 309: 280-285,
CrossRef Google scholar
[74]
Taheri S, Naimi B, Rahbek C, Araújo MB (2021) Improvements in reports of species redistribution under climate change are required. Sci Adv 7:eabe1110
[75]
Talluto MV, Boulangeat I, Améztegui A, Aubin I, Berteaux D, Butler A, Doyon F, Drever CR, Fortin M, Franceschini T, Liénard JF, McKenney DW, Solarik KA, Strigul NS, Thuiller W, Gravel D. Cross-scale integration of knowledge for predicting species ranges: a metamodeling framework. Glob Ecol Biogeogr, 2016, 25: 238-249,
CrossRef Google scholar
[76]
Thuiller W, Brotons L, Araújo MB, Lavorel S. Effects of restricting environmental range of data to project current and future species distributions. Ecography, 2004, 27: 165-172,
CrossRef Google scholar
[77]
Thuiller W, Guéguen M, Renaud J, Karger DN, Zimmermann NE. Uncertainty in ensembles of global biodiversity scenarios. Nat Commun, 2019, 10: 1446,
CrossRef Google scholar
[78]
Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography, 2009, 32: 369-373,
CrossRef Google scholar
[79]
Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. BLOCKCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol Evol, 2019, 10: 225-232,
CrossRef Google scholar
[80]
VanDerWal J, Shoo LP, Graham C, Williams SE. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know?. Ecol Model, 2009, 220: 589-594,
CrossRef Google scholar
[81]
Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec Y, Steinberg PD. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci, 2016, 113: 13791-13796,
CrossRef Google scholar
[82]
Waldock C, Stuart-Smith RD, Albouy C, Cheung WW, Edgar GJ, Mouillot D, Tjiputra J, Pellissier L. A quantitative review of abundance-based species distribution models. Ecography, 2022, 2022,
CrossRef Google scholar
[83]
Wang QL, Yu SS, Dong YW. Parental effect of long acclimatization on thermal tolerance of juvenile sea cucumber Apostichopus japonicus. PLoS ONE, 2015, 10,
CrossRef Google scholar
[84]
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 2008, 62: 2868-2883,
CrossRef Google scholar
[85]
Woodward G, Perkins DM, Brown LE. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B, 2010, 365: 2093-2106,
CrossRef Google scholar
[86]
Yang G, Xia C, Xiong X, Feng Z, Chen Z, Yang Y, Ma D, Ju X, Zheng Q, Yuan Y. The seafloor heat flux driven by bottom water temperature variation in the Yellow and Bohai Seas. Ocean Model, 2022, 177,
CrossRef Google scholar
[87]
Yang H, Hamel JF, Mercier A (eds) (2015) The sea cucumber Apostichopus japonicus: history, biology and aquaculture. Academic Press, New York, p 453
[88]
Zhang W, Cao Z, Li Y, Zhao H, Huang J, Liang Z, Huang L. Taxonomic status of the three color variants in sea cucumber (Apostichopus japonicus): evidence from mitochondrial phylogenomic analyses. Mitochondr DNA A, 2016, 27: 2330-2333,
CrossRef Google scholar
[501]
Zhang Z, Capinha C, Karger DN, Turon X, MacIsaac HJ, Zhan A. Impacts of climate change on geographical distributions of invasive ascidians. Mar Environ, 2020, 159,
CrossRef Google scholar
[89]
Zhang Z, Kass JM, Mammola S, Koizumi I, Li X, Tanaka K, Ikeda K, Suzuki T, Yokota M, Usio N. Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Divers Distrib, 2021, 27: 684-695,
CrossRef Google scholar
[90]
Zhang Z, Ma S, Bede-Fazekas Á, Mammola S, Qu M, Zhou J, Feng EY, Qin G, Lin Q. Considering biotic interactions exacerbates the predicted impacts of climate change on coral-dwelling species. J Biogeogr, 2024, 51: 769-782,
CrossRef Google scholar
[91]
Zhu G, Gutierrez Illan J, Crowder DW. The use of insect life tables in optimizing invasive pest distributional models. Ecography, 2021, 44: 1501-1510,
CrossRef Google scholar
[92]
Zurell D, Franklin J, König C, Bouchet PJ, Dormann CF, Elith J, Fandos G, Feng X, Guillera-Arroita G, Guisan A, Lahoz-Monfort JJ, Leitão PJ, Park DS, Peterson AT, Rapacciuolo G, Schmatz DR, Schröder B, Serra-Diaz JM, Thuiller W, Yates KL, et al.. A standard protocol for reporting species distribution models. Ecography, 2020, 43: 1261-1277,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/