Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects

D. P. Nagahawatta, N. M. Liyanage, Thilina U. Jayawardena, H. H. A. C. K. Jayawardhana, Seong-Hun Jeong, Hyung-Jun Kwon, You-Jin Jeon

Marine Life Science & Technology ›› 2024, Vol. 6 ›› Issue (2) : 280-297. DOI: 10.1007/s42995-023-00215-9
Review

Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects

Author information +
History +

Abstract

A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design.

Keywords

SARS-CoV-2 / Marine natural products / Drug targets / Inhibitors

Cite this article

Download citation ▾
D. P. Nagahawatta, N. M. Liyanage, Thilina U. Jayawardena, H. H. A. C. K. Jayawardhana, Seong-Hun Jeong, Hyung-Jun Kwon, You-Jin Jeon. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. Marine Life Science & Technology, 2024, 6(2): 280‒297 https://doi.org/10.1007/s42995-023-00215-9

References

[]
Aatif M, Muteeb G, Alsultan A, Alshoaibi A, Khelif BY. Dieckol and its derivatives as potential inhibitors of SARS-CoV-2 spike protein (UK strain: VUI 202012/01): a computational study. Mar Drugs, 2021, 19: 242.
CrossRef Google scholar
[]
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300: 1763-1767.
CrossRef Google scholar
[]
Anderson ED, Thomas L, Hayflick JS, Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem, 1993, 268: 24887-24891.
CrossRef Google scholar
[]
Anjum K, Abbas SQ, Shah SA, Akhter N, Batool S, Hassan SS. Marine sponges as a drug treasure. Biomol Ther (seoul), 2016, 24: 347-362.
CrossRef Google scholar
[]
Astuti I, Ysrafil Y. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr, 2020, 14: 407-412.
CrossRef Google scholar
[]
Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antivir Res, 2015, 115: 21-38.
CrossRef Google scholar
[]
Békés M, Rut W, Kasperkiewicz P, Mulder MPC, Ovaa H, Drag M, Lima CD, Huang TT. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem J, 2015, 468: 215-226.
CrossRef Google scholar
[]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4: 1011-1033.
CrossRef Google scholar
[]
Bergmann W, Feeney RJ. Contributions to the study of marine products. Xxxii. The Nucleosides of Sponges. I.1. J Org Chem, 2002, 16: 981-987.
CrossRef Google scholar
[]
Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med, 2020, 383: 2451-2460.
CrossRef Google scholar
[]
Bestle D, Heindl MR, Limburg H, Van Lam T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk H, Garten W, Steinmetzer T, Bottcher-Friebertshauser E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance, 2020, 3.
CrossRef Google scholar
[]
Bolles M, Donaldson E, Baric R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Curr Opin Virol, 2011, 1: 624-634.
CrossRef Google scholar
[]
Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol, 2003, 77: 8801-8811.
CrossRef Google scholar
[]
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv, 2013, 4: 1443-1467.
CrossRef Google scholar
[]
Buchanan MS, Carroll AR, Wessling D, Jobling M, Avery VM, Davis RA, Feng Y, Xue Y, Öster L, Fex T, Deinum J, Hooper JNA, Quinn RJ. Clavatadine A, a natural product with selective recognition and irreversible inhibition of factor XIa. J Med Chem, 2008, 51: 3583-3587.
CrossRef Google scholar
[]
Bugge TH, Antalis TM, Wu Q. Type II transmembrane serine proteases. J Biol Chem, 2009, 284: 23177-23181.
CrossRef Google scholar
[]
Bzowka M, Mitusinska K, Raczynska A, Samol A, Tuszynski JA, Gora A. Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int J Mol Sci, 2020, 21: 3099.
CrossRef Google scholar
[]
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yun Y, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med, 2020, 382: 1787-1799.
CrossRef Google scholar
[]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol, 2020, 92: 418-423.
CrossRef Google scholar
[]
Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem, 2004, 11: 2399-2419.
CrossRef Google scholar
[]
Devi KP, Pourkarim MR, Thijssen M, Sureda A, Khayatkashani M, Cismaru CA, Neagoe IB, Habtemariam S, Razmjouei S, Khayat Kashani HR. A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacol Rep, 2022, 74: 425-430.
CrossRef Google scholar
[]
Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC, Gabriel SE. Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem, 2002, 277: 8338-8345.
CrossRef Google scholar
[]
Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis, 2003, 3: 338-348.
CrossRef Google scholar
[]
Du QS, Wang SQ, Zhu Y, Wei DQ, Guo H, Sirois S, Chou KC. Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide. Peptides, 2004, 25: 1857-1864.
CrossRef Google scholar
[]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol, 2009, 7: 226-236.
CrossRef Google scholar
[]
Dufour EK, Denault JB, Bissonnette L, Hopkins PC, Lavigne P, Leduc R. The contribution of arginine residues within the P6–P1 region of alpha 1-antitrypsin to its reaction with furin. J Biol Chem, 2001, 276: 38971-38979.
CrossRef Google scholar
[]
Dzimianski JV, Scholte FEM, Bergeron E, Pegan SD. ISG15: It's complicated. J Mol Biol, 2019, 431: 4203-4216.
CrossRef Google scholar
[]
EA JA, Jones IM. Membrane binding proteins of coronaviruses. Future Virol, 2019, 14: 275-286.
CrossRef Google scholar
[]
Ersmark K, Del Valle JR, Hanessian S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Ed Engl, 2008, 47: 1202-1223.
CrossRef Google scholar
[]
Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N. A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol, 2006, 16: 27-34.
CrossRef Google scholar
[]
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, Beth-Din A, Melamed S, Weiss S, Israely T, Paran N, Schwartz M, Stern-Ginossar N. The coding capacity of SARS-CoV-2. Nature, 2021, 589: 125-130.
CrossRef Google scholar
[]
Firdaus M, Nurdiani R, Artasasta IN, Mutoharoh S, Pratiwi O. Potency of three brown seaweeds species as the inhibitor of RNA-dependent RNA polymerase of SARS-CoV-2. Rev Chim, 2020, 71: 80-86.
CrossRef Google scholar
[]
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev, 2008, 72: 672-685.
CrossRef Google scholar
[]
Fu Z, Huang B, Tang J, Liu S, Liu M, Ye Y, Liu Z, Xiong Y, Zhu W, Cao D, Li J, Niu X, Zhou H, Zhao YJ, Zhang G, Huang H. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun, 2021, 12: 488.
CrossRef Google scholar
[]
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368: 779-782.
CrossRef Google scholar
[]
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Viera VE, Dupont HT, Honoré S, Colson P, Chabrière E, Scola B, Rolanin J, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020, 56.
CrossRef Google scholar
[]
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs, 2020, 18: 225.
CrossRef Google scholar
[]
Gonzalez Y, Doens D, Santamaria R, Ramos M, Restrepo CM, Barros de Arruda L, Lleonart R, Gutiérrez M, Fernandez PL. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages. PLoS ONE, 2013, 8.
CrossRef Google scholar
[]
Graham RL, Baric RS. SARS-CoV-2: combating coronavirus emergence. Immunity, 2020, 52: 734-736.
CrossRef Google scholar
[]
Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res, 2017, 27: 119-129.
CrossRef Google scholar
[]
Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res, 2002, 84: 101-109.
CrossRef Google scholar
[]
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 2012, 4: 557-580.
CrossRef Google scholar
[]
Heaton SM, Borg NA, Dixit VM. Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med, 2016, 213: 1-13.
CrossRef Google scholar
[]
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrier G, Wu NH, Nitsche A, Muller MA, Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181: 271-280.
CrossRef Google scholar
[]
Hofmann H, Hattermann K, Marzi A, Gramberg T, Geier M, Krumbiegel M, Kuate S, Uberia K, Niedrig M, Pohlmann S. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J Virol, 2004, 78: 6134-6142.
CrossRef Google scholar
[]
Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, Ng YY, Lo J, Chan J, Tan AR, Shum HP, Chan V, Ku AK, Sin KM, Leung WS, Law WL, Lung DC, Sin S, Yeung P, Yip CC, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020, 395: 1695-1704.
CrossRef Google scholar
[]
Imran M, Saleemi MK, Chen Z, Wang XG, Zhou DY, Li YC, Zhao Z, Zheng B, Li Q, Cao S, Ye J. Decanoyl-Arg-Val-Lys-Arg-Chloromethylketone: an antiviral compound that acts against flaviviruses through the inhibition of furin-mediated prM cleavage. Viruses-Basel, 2019, 11: 1011.
CrossRef Google scholar
[]
Ireland CM, Copp BR, Foster MP, McDonald LA, Radisky DC, Swersey JC. Bioactive compounds from the sea Marine and freshwater products handbook, 2000 Boca Raton CRC Press 641-661.
[]
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol, 2019, 93: e01815-01818.
CrossRef Google scholar
[]
Jaafar ZA, Kieft JS. Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol, 2019, 17: 110-123.
CrossRef Google scholar
[]
Jayawardena TU, Sanjeewa KKA, Nagahawatta DP, Lee HG, Lu YA, Vaas APJP, Abeytunga DTU, Nanayakkara CM, Lee DS, Jeon YJ. Anti-inflammatory effects of sulfated polysaccharide from Sargassum swartzii in macrophages via blocking TLR/NF-Κb signal transduction. Mar Drugs, 2020, 18: 601.
CrossRef Google scholar
[]
Jayawardena TU, Nagahawatta DP, Fernando IPS, Kim YT, Kim JS, Kim WS, Lee JS, Jeon YJ. A review on fucoidan structure, extraction techniques, and its role as an immunomodulatory agent. Mar Drugs, 2022, 20: 755.
CrossRef Google scholar
[]
Jean F, Stella K, Thomas L, Liu G, Xiang Y, Reason AJ, Thomas G. alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci USA, 1998, 95: 7293-7298.
CrossRef Google scholar
[]
Jin W, Zhang W, Mitra D, McCandless MG, Sharma P, Tandon R, Zhang F, Linhardt RJ. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int J Biol Macromol, 2020, 163: 1649-1658.
CrossRef Google scholar
[]
Kaushik D, Bhandari R, Kuhad A. TLR4 as a therapeutic target for respiratory and neurological complications of SARS-CoV-2. Expert Opin Ther Targets, 2021, 25: 491-508.
CrossRef Google scholar
[]
Khan MT, Ali A, Wang Q, Irfan M, Khan A, Zeb MT, Zhang YJ, Chinnasamy S, Wei DQ. Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. J Biomol Struct Dyn, 2021, 39: 3627-3637.
CrossRef Google scholar
[]
Kim TS, Heinlein C, Hackman RC, Nelson PS. Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Mol Cell Biol, 2006, 26: 965-975.
CrossRef Google scholar
[]
Kim SY, Jin W, Sood A, Montgomery DW, Grant OC, Fuster MM, Fu L, Dordick JS, Woods R, Zhang F, Linhardt RJ. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antivir Res, 2020, 181.
CrossRef Google scholar
[]
Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP, Lu BG, Kuchei NW, Grohmann C, Shibata Y, Gan ZY, Cooney JP, Doerflinger M, Au AE, Blackmore TR, Noort GJ, Geurink PP, Ovaa H, Newman J, Tunnicliffe AR, et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J, 2020, 39.
CrossRef Google scholar
[]
Ko W, Sohn JH, Jang JH, Ahn JS, Kang DG, Lee HS, Kim JS, Kim YC, Oh H. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-small ka, CyrillicB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chem Biol Interact, 2016, 244: 16-26.
CrossRef Google scholar
[]
König GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JMJPM. Biological activities of selected marine natural products. Planta Med, 1994, 60: 532-537.
CrossRef Google scholar
[]
Kumar V, Parate S, Yoon S, Lee G, Lee KW. Computational simulations identified marine-derived natural bioactive compounds as replication inhibitors of SARS-CoV-2. Front Microbiol, 2021, 12: 647295-647295.
CrossRef Google scholar
[]
Kupferschmidt K, Cohen J. Race to find COVID-19 treatments accelerates. Science, 2020, 367: 1412-1413.
CrossRef Google scholar
[]
Kwon PS, Oh H, Kwon SJ, Jin W, Zhang F, Fraser K, Hong JJ, Linhard RJ, Dordick JS. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov, 2020, 6: 50.
CrossRef Google scholar
[]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 2020, 5: 562-569.
CrossRef Google scholar
[]
Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antivir Res, 2013, 100: 246-254.
CrossRef Google scholar
[]
Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol, 2015, 89: 1954-1964.
CrossRef Google scholar
[]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol, 2016, 3: 237-261.
CrossRef Google scholar
[]
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426: 450-454.
CrossRef Google scholar
[]
Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309: 1864-1868.
CrossRef Google scholar
[]
Lim L, Shi J, Mu Y, Song JJPO. Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284–T285-I286/A mutations on the extra domain. PLoS ONE, 2014, 9.
CrossRef Google scholar
[]
Lindahl U, Li JP. Heparin - an old drug with multiple potential targets in Covid-19 therapy. J Thromb Haemost, 2020, 18: 2422-2424.
CrossRef Google scholar
[]
Lindahl U, Couchman J, Kimata K, Esko JD. Proteoglycans and sulfated glycosaminoglycans, 2015 3 Cold Spring Harbor Cold Spring Harbor Laboratory Press
[]
Lu R, Wang Y, Wang W, Nie K, Deng Y, Zhou W, Li Y, Wang H, Wang W, Ke C, Ma X, Wu G, Tan W. Complete genome sequence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) from the first imported MERS-CoV Case in China. Genome Announc, 2015, 3: e00818-e1815.
CrossRef Google scholar
[]
Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N. Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol Part C Toxicol Appl Pharmacol, 2011, 153: 191-222.
CrossRef Google scholar
[]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, 2020, 20: 355-362.
CrossRef Google scholar
[]
Miller B, Friedman AJ, Choi H, Hogan J, McCammon JA, HookV GWH. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J Nat Prod, 2014, 77: 92-99.
CrossRef Google scholar
[]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiocehm, 2020, 21: 730-738.
CrossRef Google scholar
[]
Muller C, Schulte FW, Lange-Grunweller K, Obermann W, Madhugiri R, Pleschka S, Ziebuhr J, Hartmann RK, Grunweller A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir Res, 2018, 150: 123-129.
CrossRef Google scholar
[]
Nagahawatta DP, Kim HS, Jee Y-H, Jayawardena TU, Ahn G, Namgung J, Yeo I, Sanjeewa KKA, Jeon YJ. Sargachromenol isolated from Sargassum horneri inhibits particulate matter-induced inflammation in macrophages through toll-like receptor-mediated cell signaling pathways. Mar Drugs, 2022, 20: 28.
CrossRef Google scholar
[]
Nagahawatta DP, Liyanage NM, Jayawardhana HHACK, Jayawardena TU, Lee HG, Heo MS, Jeon YJ. Eckmaxol isolated from Ecklonia maxima attenuates particulate-matter-induced inflammation in MH-S lung macrophage. Mar Drugs, 2022, 20: 766.
CrossRef Google scholar
[]
Nagahawatta DP, Liyanage NM, Jayawardhana HHACK, Lee HG, Jayawardena TU, Jeon YJ. Anti-fine dust effect of fucoidan extracted from Ecklonia maxima laves in macrophages via inhibiting inflammatory signaling pathways. Mar Drugs, 2022, 20: 413.
CrossRef Google scholar
[]
Nagahawatta DP, Liyanage NM, Je JG, Jayawardhana HHACK, Jayawardena TU, Jeong SH, Kwon HJ, Choi CS, Jeon YJ. Polyphenolic compounds isolated from marine algae attenuate the replication of SARS-CoV-2 in the host cell through a multi-target approach of 3CLpro and PLpro. Mar Drugs, 2022, 20: 786.
CrossRef Google scholar
[]
Nakao Y, Masuda A, Matsunaga S, Fusetani N. Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoei 1. J Am Chem Soc, 1999, 121: 2425-2431.
CrossRef Google scholar
[]
Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis, 2020, 1866.
CrossRef Google scholar
[]
Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF, Peters J, Neculai M, Plumb J, Loppnau P, Pizarro JC, Seitova A, Trimble WS, Saftig P, Grinstein S, Dhe-Paganon S. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature, 2013, 504: 172-176.
CrossRef Google scholar
[]
Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhun P, Buchmeier MJ. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol, 2011, 174: 11-22.
CrossRef Google scholar
[]
Ogden KM, Ramanathan HN, Patton JT. Mutational analysis of residues involved in nucleotide and divalent cation stabilization in the rotavirus RNA-dependent RNA polymerase catalytic pocket. Virology, 2012, 431: 12-20.
CrossRef Google scholar
[]
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun, 2020, 11: 1620.
CrossRef Google scholar
[]
Park JY, Kim JH, Kwon JM, Kwon HJ, Jeong HJ, Kim YM, Kim D, Lee WS, Ryu YB. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem, 2013, 21: 3730-3737.
CrossRef Google scholar
[]
Pavlicevic M, Maestri E, Marmiroli M. Marine bioactive peptides-an overview of generation, structure and application with a focus on food sources. Mar Drugs, 2020, 18: 424.
CrossRef Google scholar
[]
Pereira L, Critchley AT. The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times?. J Appl Phycol, 2020, 32: 1875-1877.
CrossRef Google scholar
[]
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 2009, 7: 439-450.
CrossRef Google scholar
[]
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem, 2016, 59: 6595-6628.
CrossRef Google scholar
[]
Pomponi SA. Osinga R, Tramper J, Burgess JG, Wijffels RH. The bioprocess-technological potential of the sea. Progress in industrial microbiology, 1999 Amsterdam Elsevier 5-13.
[]
Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, Derisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300: 1394-1399.
CrossRef Google scholar
[]
Sanjeewa KKA, Kim EA, Son KT, Jeon YJ. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B Biol, 2016, 162: 100-105.
CrossRef Google scholar
[]
Sanjeewa KKA, Nagahawatta DP, Yang HW, Oh JY, Jayawardena TU, Jeon YJ, Zoysa M, Whang I, Ryu B. Octominin inhibits LPS-induced chemokine and pro-inflammatory cytokine secretion from RAW 264.7 macrophages via blocking TLRs/NF-κB signal transduction. Biomolecules, 2020, 10: 511.
CrossRef Google scholar
[]
Sariol A, Perlman S. SARS-CoV-2 takes its toll. Nat Immunol, 2021, 22: 801-802.
CrossRef Google scholar
[]
Satija N, Lal SK. The molecular biology of SARS coronavirus. Ann N Y Acad Sci, 2007, 1102: 26-38.
CrossRef Google scholar
[]
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J, 2019, 16: 69.
CrossRef Google scholar
[]
Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, Leibundgut M, Thiel V, Mühlemann O, Ban N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol, 2020, 27: 959-966.
CrossRef Google scholar
[]
Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antivir Res, 2018, 154: 66-86.
CrossRef Google scholar
[]
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA, 2020, 117: 11727-11734.
CrossRef Google scholar
[]
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerabach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581: 221-224.
CrossRef Google scholar
[]
Shen WJ, Asthana S, Kraemer FB, Azhar SJJOLR. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. JLR, 2018, 59:1114-1131.
[]
Shen WJ, Azhar S, Kraemer FB. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol, 2018, 80: 95-116.
CrossRef Google scholar
[]
Shinde P, Banerjee P, Mandhare A. Marine natural products as source of new drugs: a patent review (2015–2018). Expert Opin Ther Pat, 2019, 29: 283-309.
CrossRef Google scholar
[]
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA, 2005, 102: 11876-11881.
CrossRef Google scholar
[]
Sola I, Almazán F, Zúñiga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol, 2015, 2: 265-288.
CrossRef Google scholar
[]
Song S, Peng H, Wang Q, Liu Z, Dong X, Wen C, Ai C, Zhang Y, Wang Z, Zhu B. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct, 2020, 11: 7415-7420.
CrossRef Google scholar
[]
Speake H, Phillips A, Chong T, Sikazwe C, Levy A, Lang J, Scalley B, Speers DJ, Smith DW, Effler P, McEvoy SP. Flight-associated transmission of Severe Acute Respiratory Syndrome Coronavirus 2 corroborated by whole-genome sequencing. Emerg Infect Dis, 2020, 26: 2872-2880.
CrossRef Google scholar
[]
Steitz TA. A mechanism for all polymerases. Nature, 1998, 391: 231-232.
CrossRef Google scholar
[]
Surti M, Patel M, Adnan M, Moin A, Ashraf SA, Siddiqui AJ, Snoussi M, Deshpande S, Reddy MNJRA. Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study. RSC Adv, 2020, 10: 37707-37720.
CrossRef Google scholar
[]
Tamama K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr Rev, 2020, 79: 814-823.
CrossRef Google scholar
[]
Tang C, Deng Z, Li X, Yang M, Tian Z, Chen Z, Wang G, Wu W, Feng WH, Zhang G, Chen Z. Helicase of type 2 porcine reproductive and respiratory syndrome virus strain HV reveals a unique structure. Viruses, 2020, 12: 215.
CrossRef Google scholar
[]
Therapy REoC (2021) Recovery trial closes recruitment to colchicine treatment for patients hospitalised with COVID-19. https://www.recoverytrial.net/news/recovery-trial-closes-recruitment-to-colchicine-treatment-for-patients-hospitalised-with-covid-19
[]
Tong TR. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect Disord Drug Targets, 2009, 9: 223-245.
CrossRef Google scholar
[]
Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett, 2020, 30.
CrossRef Google scholar
[]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol, 2021, 19: 155-170.
CrossRef Google scholar
[]
Vaarala MH, Porvari KS, Kellokumpu S, Kyllönen AP, Vihko PT. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol, 2001, 193: 134-140.
CrossRef Google scholar
[]
Venkataraman S, Prasad BVLS, Selvarajan R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses, 2018, 10: 76.
CrossRef Google scholar
[]
Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lazavecchia A, Zambon M, Rey FA, Veesler D. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 2019, 176: 1026-1039.
CrossRef Google scholar
[]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181: 281-292.
CrossRef Google scholar
[]
Wang SH, Huang CY, Chen CY, Chang CC, Huang CY, Dong CD, Chang JS. Structure and biological activity analysis of fucoidan isolated from Sargassum siliquosum. ACS Omega, 2020, 5: 32447-32455.
CrossRef Google scholar
[]
Wei C, Wan L, Yan Q, Wang X, Zhang J, Yang X, Zhang Y, Fan C, Li D, Deng Y, Sun J, Gong J, Yang X, Wang Y, Wang X, Li J, Yang H, Li H, Zhang Z, Wang R, et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab, 2020, 2: 1391-1400.
CrossRef Google scholar
[]
White KM, Rosales R, Yildiz S, Kehrer T, Miorin L, Moreno E, Jangra S, Uccellini MB, Rathnesinghe R, Coughlan L, Romareo C, Batra J, Rojc A, Bouhaddou M, Fabius JM, Dejosez MD, Guillen MJ, Losada A, Aviles P, Schotsaert M, et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371: 926-931.
CrossRef Google scholar
[]
Wong JP, Damania B. SARS-CoV-2 dependence on host pathways. Science, 2021, 371: 884-885.
CrossRef Google scholar
[]
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367: 1260-1263.
CrossRef Google scholar
[]
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579: 265-269.
CrossRef Google scholar
[]
Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, Zhu W (2020) Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv 2020.2001.2027.921627
[]
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev, 2014, 114: 6880-6911.
CrossRef Google scholar
[]
Yasuhara-Bell J, Lu Y. Marine compounds and their antiviral activities. Antivir Res, 2010, 86: 231-240.
CrossRef Google scholar
[]
Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol, 2016, 18: 579-586.
CrossRef Google scholar
[]
Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun, 2017, 8: 15092.
CrossRef Google scholar
[]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med, 2020, 46: 586-590.
CrossRef Google scholar
[]
Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Reslo AR, Simmons G. Protease inhibitors targeting coronavirus and filovirus entry. Antivir Res, 2015, 116: 76-84.
CrossRef Google scholar
[]
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Yan Z, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jianh RD, Liu MQ, Chen Y, Shen XR, Wang X, Shuang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579: 270-273.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/