A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation

Jiwen Liu, Da-Wei Li, Xinxin He, Ronghua Liu, Haojin Cheng, Chenglong Su, Mengna Chen, Yonghong Wang, Zhongsheng Zhao, Hanyue Xu, Zhangyu Cheng, Zicheng Wang, Nikolai Pedentchouk, David J. Lea-Smith, Jonathan D. Todd, Xiaoshou Liu, Meixun Zhao, Xiao-Hua Zhang

Marine Life Science & Technology ›› 2024, Vol. 6 ›› Issue (1) : 168-181. DOI: 10.1007/s42995-023-00212-y
Research Paper

A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation

Author information +
History +

Abstract

Hadal trenches are characterized by enhanced and infrequent high-rate episodic sedimentation events that likely introduce not only labile organic carbon and key nutrients but also new microbes that significantly alter the subseafloor microbiosphere. Currently, the role of high-rate episodic sedimentation in controlling the composition of the hadal subseafloor microbiosphere is unknown. Here, analyses of carbon isotope composition in a ~ 750 cm long sediment core from the Challenger Deep revealed noncontinuous deposition, with anomalous 14C ages likely caused by seismically driven mass transport and the funneling effect of trench geomorphology. Microbial community composition and diverse enzyme activities in the upper ~ 27 cm differed from those at lower depths, probably due to sudden sediment deposition and differences in redox condition and organic matter availability. At lower depths, microbial population numbers, and composition remained relatively constant, except at some discrete depths with altered enzyme activity and microbial phyla abundance, possibly due to additional sudden sedimentation events of different magnitude. Evidence is provided of a unique role for high-rate episodic sedimentation events in controlling the subsurface microbiosphere in Earth’s deepest ocean floor and highlight the need to perform thorough analysis over a large depth range to characterize hadal benthic populations. Such depositional processes are likely crucial in shaping deep-water geochemical environments and thereby the deep subseafloor biosphere.

Keywords

Hadal subseafloor / Deep water sediment / Mariana Trench / Radiocarbon / Microbial community / Redox potential

Cite this article

Download citation ▾
Jiwen Liu, Da-Wei Li, Xinxin He, Ronghua Liu, Haojin Cheng, Chenglong Su, Mengna Chen, Yonghong Wang, Zhongsheng Zhao, Hanyue Xu, Zhangyu Cheng, Zicheng Wang, Nikolai Pedentchouk, David J. Lea-Smith, Jonathan D. Todd, Xiaoshou Liu, Meixun Zhao, Xiao-Hua Zhang. A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation. Marine Life Science & Technology, 2024, 6(1): 168‒181 https://doi.org/10.1007/s42995-023-00212-y

References

[1]
Bao R, Strasser M, McNichol AP, Haghipour N, McIntyre C, Wefer G, Eglinton TI. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat Commun, 2018, 9: 121,
CrossRef Google scholar
[2]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120,
CrossRef Google scholar
[3]
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, et al.. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019, 37: 852-857,
CrossRef Google scholar
[4]
Bushnell B. . BBMap: a fast, accurate, splice-aware aligner, 2014 Walnut Creek, CA LBNL Department of Energy Joint Genome Institute
[5]
Cadillo-Quiroz H, Bräuer S, Yashiro E, Sun C, Yavitt J, Zinder S. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol, 2006, 8: 1428-1440,
CrossRef Google scholar
[6]
Chen P, Zhou H, Huang Y, Xie Z, Zhang M, Wei Y, Li J, Ma Y, Luo M, Ding W, Cao J, Jiang T, Nan P, Fang J, Li X. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol, 2021, 22: 207,
CrossRef Google scholar
[7]
Chen M, Li D-W, Zhang H, Wang Z, Zhao M. Distinct variations and mechanisms for terrestrial OC 14C-ages in the Eastern China marginal sea sediments since the last deglaciation. Quat Sci Rev, 2023, 315,
CrossRef Google scholar
[8]
Cheng H, Zhang Y, Guo Z, He X, Liu R, Zhu XY, Li J, Liu J, Zhang X-H. Microbial dimethylsulfoniopropionate cycling in deep sediment of the Mariana Trench. Appl Environ Microbiol, 2023, 89,
CrossRef Google scholar
[9]
Danovaro R, Della Croce N, Dell’Anno A, Pusceddu A. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep Sea Res Part I Oceanogr Res Pap, 2003, 50: 1411-1420,
CrossRef Google scholar
[10]
Davis J, Benner R. Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin. Deep Sea Res Part II Top Stud Oceanogr, 2005, 52: 3396-3410,
CrossRef Google scholar
[11]
Deng L, Bölsterli D, Kristensen E, Meile C, Su C-C, Bernasconi SM, Seidenkrantz M-S, Glombitza C, Lagostina L, Han X, Jørgensen BB, Røy H, Lever MA. Macrofaunal control of microbial community structure in continental margin sediments. Proc Natl Acad Sci USA, 2020, 117: 15911-15922,
CrossRef Google scholar
[12]
D'Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, Abrams LJ, Smith DC, Graham D, Hasiuk F, Schrum H, Stancin AM. Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA, 2009, 106: 11651-11656,
CrossRef Google scholar
[13]
D’Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun, 2019, 10: 3519,
CrossRef Google scholar
[14]
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10: 996-998,
CrossRef Google scholar
[15]
Estes ER, Pockalny R, D’Hondt S, Inagaki F, Morono Y, Murray RW, Nordlund D, Spivack AJ, Wankel SD, Xiao N, Hansel CM. Persistent organic matter in oxic subseafloor sediment. Nat Geosci, 2019, 12: 126-131,
CrossRef Google scholar
[16]
Fan S, Wang M, Ding W, Li YX, Zhang YZ, Zhang W. Scientific and technological progress in the microbial exploration of the hadal zone. Mar Life Sci Technol, 2022, 4: 127-137,
CrossRef Google scholar
[17]
Faust JC, Tessin A, Fisher BJ, Zindorf M, Papadaki S, Hendry KR, Doyle KA, März C. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat Commun, 2021, 12: 275,
CrossRef Google scholar
[18]
Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 2004, 305: 362-366,
CrossRef Google scholar
[19]
Freitas L, Appolinario L, Calegario G, Campeão M, Tschoeke D, Garcia G, Venancio IM, Cosenza CAN, Leomil L, Bernardes M, Albuquerque AL, Thompson C, Thompson F. Glacial-interglacial transitions in microbiomes recorded in deep-sea sediments from the western equatorial Atlantic. Sci Total Environ, 2020, 746,
CrossRef Google scholar
[20]
Frossard A, Hammes F, Gessner MO. Flow cytometric assessment of bacterial abundance in soils, sediments and sludge. Front Microbiol, 2016, 7: 903,
CrossRef Google scholar
[21]
Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep, 2013, 3: 2471,
CrossRef Google scholar
[22]
Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci, 2013, 6: 284-288,
CrossRef Google scholar
[23]
Hayes MA, Jesse A, Hawke B, Baldock J, Tabet B, Lockington D, Lovelock CE. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Glob Chang Biol, 2017, 23: 4222-4234,
CrossRef Google scholar
[24]
Heeszel DS, Wiens DA, Shore PJ, Shiobara H, Sugioka H. Earthquake evidence for along-arc extension in the Mariana Islands. Geochem Geophys Geosyst, 2008, 9: Q12X03,
CrossRef Google scholar
[25]
Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, Juliarni RE, Danovaro R, Corinaldesi C, Kitahashi T, Tasumi E, Nishizawa M, Takai K, Nomaki H, Nunoura T. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J, 2020, 14: 740-756,
CrossRef Google scholar
[26]
Jørgensen BB, Marshall IP. Slow microbial life in the seabed. Annu Rev Mar Sci, 2016, 8: 311-332,
CrossRef Google scholar
[27]
Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 2012, 109: 16213-16216,
CrossRef Google scholar
[28]
Khalili B, Weihe C, Kimball S, Schmidt KT, Martiny JB. Optimization of a method to quantify soil bacterial abundance by flow cytometry. mSphere, 2019, 4: e00435-e519,
CrossRef Google scholar
[29]
Kioka A, Schwestermann T, Moernaut J, Ikehara K, Kanamatsu T, Eglinton TI, Strasser M. Event stratigraphy in a hadal oceanic trench: the Japan trench as sedimentary archive recording recurrent giant subduction zone earthquakes and their role in organic carbon export to the deep sea. Front Earth Sci, 2019, 7: 319,
CrossRef Google scholar
[30]
Könneke M, Bernhard AE, de La Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437: 543-546,
CrossRef Google scholar
[31]
Kraft B, Jehmlich N, Larsen M, Bristow L, Könneke M, Thamdrup B, Canfield D. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 2022, 375: 97-100,
CrossRef Google scholar
[32]
Li Y, Cao W, Wang Y, Ma Q. Microbial diversity in the sediments of the southern Mariana Trench. J Oceanol Limnol, 2019, 37: 1024-1029,
CrossRef Google scholar
[33]
Liang J, Liu J, Zhan Y, Zhou S, Xue C-X, Sun C, Lin Y, Luo C, Wang X, Zhang X-H. Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter. Environ Int, 2021, 155,
CrossRef Google scholar
[34]
Liu J, Zheng Y, Lin H, Wang X, Li M, Liu Y, Yu M, Zhao M, Pedentchouk N, Lea-Smith DJ, Todd JD, Magill CR, Zhang WJ, Zhou S, Song D, Zhong H, Xin Y, Yu M, Tian J, Zhang X-H. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome, 2019, 7: 47,
CrossRef Google scholar
[35]
Liu R, Wei X, Song W, Wang L, Cao J, Wu J, Thomas T, Jin T, Wang Z, Wei W, Wei Y, Zhai H, Yao C, Shen Z, Du J, Fang J. Novel chloroflexi genomes from the deepest ocean reveal metabolic strategies for the adaptation to deep-sea habitats. Microbiome, 2022, 10: 75,
CrossRef Google scholar
[36]
López-Pérez M, Haro-Moreno JM, Iranzo J, Rodriguez-Valera F. Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria. mSystems, 2020, 5: e01041-e1120,
CrossRef Google scholar
[37]
Luo M, Gieskes J, Chen L, Shi X, Chen D. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Mar Geol, 2017, 386: 98-106,
CrossRef Google scholar
[38]
Luo M, Glud RN, Pan B, Wenzhöfer F, Xu Y, Lin G, Chen D. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys Res Lett, 2018, 45: 2752-2760,
CrossRef Google scholar
[39]
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27: 2957-2963,
CrossRef Google scholar
[40]
Mahmoudi N, Hagen SM, Hazen TC, Steen AD. Patterns in extracellular enzyme activity and microbial diversity in deep-sea Mediterranean sediments. Deep Sea Res Part I Oceanogr Res Pap, 2020, 158,
CrossRef Google scholar
[41]
Martens-Habbena W, Berube PM, Urakawa H, de La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 2009, 461: 976-979,
CrossRef Google scholar
[43]
Morono Y, Terada T, Masui N, Inagaki F. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J, 2009, 3: 503-511,
CrossRef Google scholar
[44]
Nunoura T, Nishizawa M, Hirai M, Shimamura S, Harnvoravongchai P, Koide O, Morono Y, Fukui T, Inagaki F, Miyazaki J, Takaki Y, Takai K. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ, 2018, 33: 186-194,
CrossRef Google scholar
[45]
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res, 2017, 27: 824-834,
CrossRef Google scholar
[46]
Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol, 2018, 16: 671-683,
CrossRef Google scholar
[47]
Orsi WD, Schink B, Buckel W, Martin WF. Physiological limits to life in anoxic subseafloor sediment. FEMS Microbiol Rev, 2020, 44: 219-231,
CrossRef Google scholar
[48]
Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol, 2014, 352: 409-425,
CrossRef Google scholar
[49]
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. Microbial community diversity within sediments from two geographically separated hadal trenches. Front Microbiol, 2019, 10: 347,
CrossRef Google scholar
[50]
Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, Liu H, Huang X, Zhang X, Nakagawa T, Mende DR, Bollmann A, Wang B, Zhang Y, Amin SA, Nielsen JL, Mori K, Takahashi R, Virginia Armbrust E, Winkler MH, et al.. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J, 2020, 14: 2595-2609,
CrossRef Google scholar
[51]
Rastelli E, Corinaldesi C, Dell’Anno A, Tangherlini M, Lo Martire M, Nishizawa M, Nomaki H, Nunoura T, Danovaro R. Drivers of bacterial α-and β-diversity patterns and functioning in subsurface hadal sediments. Front Microbiol, 2019, 10: 2609,
CrossRef Google scholar
[52]
Schauberger C, Middelboe M, Larsen M, Peoples LM, Bartlett DH, Kirpekar F, Rowden AA, Wenzhöfer F, Thamdrup B, Glud RN. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnol Oceanogr, 2021, 66: 2095-2109,
CrossRef Google scholar
[53]
Schauberger C, Glud RN, Hausmann B, Trouche B, Maignien L, Poulain J, Wincker P, Arnaud-Haond S, Wenzhöfer F, Thamdrup B. Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. ISME J, 2021, 15: 3455-3467,
CrossRef Google scholar
[54]
Schwestermann T, Eglinton TI, Haghipour N, McNichol AP, Ikehara K, Strasser M. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench. Earth Planet Sci Lett, 2021, 563,
CrossRef Google scholar
[55]
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30: 2068-2069,
CrossRef Google scholar
[56]
Shan S, Qi Y, Tian J, Wang X, Luo C, Zhou C, Zhang X-H, Xin Y, Wang Y. Carbon cycling in the deep Mariana Trench in the western north Pacific Ocean: insights from radiocarbon proxy data. Deep Sea Res Part I Oceanogr Res Pap, 2020, 164,
CrossRef Google scholar
[57]
Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA, 2006, 103: 12115-12120,
CrossRef Google scholar
[58]
Sun D-L, Jiang X, Wu QL, Zhou N-Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol, 2013, 79: 5962-5969,
CrossRef Google scholar
[59]
Thamdrup B, Schauberger C, Larsen M, Trouche B, Maignien L, Arnaud-Haond S, Wenzhöfer F, Glud RN. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc Natl Acad Sci USA, 2021, 118,
CrossRef Google scholar
[60]
Turnewitsch R, Falahat S, Stehlikova J, Oguri K, Glud RN, Middelboe M, Kitazato H, Wenzhöfer F, Ando K, Fujio S, Yanagimoto D. Recent sediment dynamics in hadal trenches: evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics. Deep Sea Res Part I Oceanogr Res Pap, 2014, 90: 125-138,
CrossRef Google scholar
[61]
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 2018, 6: 158,
CrossRef Google scholar
[62]
Vuillemin A, Kerrigan Z, D'Hondt S, Orsi WD. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay. FEMS Microbiol Ecol, 2020, 96: fiaa223,
CrossRef Google scholar
[63]
Vuillemin A, Vargas S, Coskun OK, Pockalny R, Murray RW, Smith DC, D’Hondt S, Orsi WD. Atribacteria reproducing over millions of years in the Atlantic abyssal subseafloor. Mbio, 2020, 11: e01937-e2020,
CrossRef Google scholar
[64]
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 2016, 1: e00009-15,
CrossRef Google scholar
[65]
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007, 73: 5261-5267,
CrossRef Google scholar
[66]
Wenzhöfer F, Oguri K, Middelboe M, Turnewitsch R, Toyofuku T, Kitazato H, Glud RN. Benthic carbon mineralization in hadal trenches: assessment by in situ O2 microprofile measurements. Deep Sea Res Part I Oceanogr Res Pap, 2016, 116: 276-286,
CrossRef Google scholar
[67]
Wu J, Wang L, Du J, Liu Y, Hu L, Wei H, Fang J, Liu R. Biogeographic distribution, ecotype partitioning and controlling factors of Chloroflexi in the sediments of six hadal trenches of the Pacific Ocean. Sci Total Environ, 2023, 880,
CrossRef Google scholar
[68]
Xiao W, Xu Y, Haghipour N, Montluçon DB, Pan B, Jia Z, Ge H, Yao P, Eglinton TI. Efficient sequestration of terrigenous organic carbon in the New Britain Trench. Chem Geol, 2020, 533,
CrossRef Google scholar
[69]
Xu Y, Li X, Luo M, Xiao W, Fang J, Rashid H, Peng Y, Li W, Wenzhöfer F, Rowden AA, Glud RN. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J Geophys Res Biogeosci, 2021, 126,
CrossRef Google scholar
[70]
Xue C-X, Liu J, Lea-Smith DJ, Rowley G, Lin H, Zheng Y, Zhu X-Y, Liang J, Ahmad W, Todd JD, Zhang X-H. Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth. Microorganisms, 2020, 8: 1309,
CrossRef Google scholar
[71]
Xue C-X, Lin H, Zhu X-Y, Liu J, Zhang Y, Rowley G, Todd J, Li M, Zhang X-H. DiTing: a pipeline to infer and compare biogeochemical pathways from metagenomic and metatranscriptomic data. Front Microbiol, 2021, 12,
CrossRef Google scholar
[72]
Zhang Y, Yao P, Sun C, Li S, Shi X, Zhang XH, Liu J. Vertical diversity and association pattern of total, abundant and rare microbial communities in deep-sea sediments. Mol Ecol, 2021, 30: 2800-2816,
CrossRef Google scholar
[73]
Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF, Roerdink DL, Thorseth IH, Jørgensen SL. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA, 2020, 117: 32617-32626,
CrossRef Google scholar
[74]
Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996, 62: 316-322,
CrossRef Google scholar
[75]
Zhou Y-L, Mara P, Cui G-J, Edgcomb VP, Wang Y. Microbiomes in the challenger deep slope and bottom-axis sediments. Nat Commun, 2022, 13: 1515,
CrossRef Google scholar
[76]
Zhu G, Yang H, Lin J, Zhou Z, Xu M, Sun J, Wan K. Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophys J Int, 2019, 218: 2122-2135,
CrossRef Google scholar
[77]
Zhu X-Y, Li Y, Xue C-X, Lidbury IDEA, Todd JD, Lea-Smith DJ, Tian J, Zhang X-H, Liu J. Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. Microbiome, 2023, 11: 175,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/