Mucosal immune responses to Ichthyophthirius multifiliis in the ocular mucosa of rainbow trout (Oncorhynchus mykiss, Walbaum), an ancient teleost fish

Weiguang Kong, Guangyi Ding, Gaofeng Cheng, Peng Yang, Zhen Xu

Marine Life Science & Technology ›› 2023, Vol. 6 ›› Issue (2) : 266-279. DOI: 10.1007/s42995-023-00199-6
Research Paper

Mucosal immune responses to Ichthyophthirius multifiliis in the ocular mucosa of rainbow trout (Oncorhynchus mykiss, Walbaum), an ancient teleost fish

Author information +
History +

Abstract

The eye, as a specialized visual organ, is directly exposed to the external environment, and, therefore, it faces constant challenges from external pathogenic organisms and toxins. In the ocular mucosa (OM) of mammals, mucosal-associated lymphoid tissues (MALTs) constitute the primary line of defense. However, the immune defense role of the OM remains unknown in aquatic vertebrates. To gain insights into the immune processes within the OM of teleost fish, we developed an infection model of rainbow trout (Oncorhynchus mykiss) OM using a parasite, Ichthyophthirius multifiliis (Ich). Immunofluorescence, qPCR, and H&E staining revealed that Ich successfully infiltrates the OM of rainbow trout, leading to pathological structural changes, as evidenced by A&B staining. Importantly, the qPCR results indicate an up-regulation of immune-related genes following Ich infection in the OM. Moreover, transcriptome analyses were conducted to detect immune responses and impairments in eye function within the OM of rainbow trout with Ich infection. The results of the transcriptome analysis that Ich infection can cause an extensive immune response in the OM, ultimately affecting ocular function. To the best of our knowledge, our findings represent for the first time that the teleost OM could act as an invasion site for parasites and trigger a strong mucosal immune response to parasitic infection.

Keywords

Ocular mucosa / Mucosal immunity / Transcriptome analysis / Oncorhynchus mykiss / Ichthyophthirius multifiliis

Cite this article

Download citation ▾
Weiguang Kong, Guangyi Ding, Gaofeng Cheng, Peng Yang, Zhen Xu. Mucosal immune responses to Ichthyophthirius multifiliis in the ocular mucosa of rainbow trout (Oncorhynchus mykiss, Walbaum), an ancient teleost fish. Marine Life Science & Technology, 2023, 6(2): 266‒279 https://doi.org/10.1007/s42995-023-00199-6

References

[1]
Akpek EK, Gottsch JD. Immune defense at the ocular surface. Eye, 2003, 17: 949-956,
CrossRef Google scholar
[2]
Ambroziak AM, Szaflik J, Szaflik JP, Ambroziak M, Witkiewicz J, Skopinski P. Immunomodulation on the ocular surface: a review. Cent Eur J Immunol, 2016, 41: 195-208,
CrossRef Google scholar
[3]
Ansari MWNA. Skalicky SE. Protective mechanisms of the eye and the eyelids. Ocular and visual physiology, 2016 Cham Springer 3-12
[4]
Armstrong L, Collin J, Mostafa I, Queen R, Figueiredo FC, Lako M. In the eye of the storm: SARS-CoV-2 infection and replication at the ocular surface?. Stem Cells Transl Med, 2021, 10: 976-986,
CrossRef Google scholar
[5]
Azkargorta M, Soria J, Acera A, Iloro I, Elortza F. Human tear proteomics and peptidomics in ophthalmology: toward the translation of proteomic biomarkers into clinical practice. J Proteom, 2017, 150: 359-367,
CrossRef Google scholar
[6]
Baden T, Euler T, Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci, 2020, 21: 5-20,
CrossRef Google scholar
[7]
Brandtzaeg P, Baekkevold ES, Morton HC. From B to A the mucosal way. Nat Immunol, 2001, 2: 1093-1094,
CrossRef Google scholar
[8]
Cordero H, Brinchmann MF, Cuesta A, Esteban MA. Chronic wounds alter the proteome profile in skin mucus of farmed gilthead seabream. BMC Genom, 2017, 18: 1-14,
CrossRef Google scholar
[9]
de Paiva CS, St Leger AJ, Caspi RR. Mucosal immunology of the ocular surface. Mucosal Immunol, 2022, 15: 1143-1157,
CrossRef Google scholar
[10]
del Palomar AP, Montolio A, Cegonino J, Dhanda SK, Lio CT, Bose T. The innate immune cell profile of the cornea predicts the onset of ocular surface inflammatory disorders. J Clin Med, 2019, 8: 2110,
CrossRef Google scholar
[11]
D'Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci, 2016, 17: 1144,
CrossRef Google scholar
[12]
Easy RH, Ross NW. Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp Biochem Physiol Part D Genom Proteom, 2009, 4: 159-167
[13]
Fernández-Montero Á, Torrecillas S, Montero D, Acosta F, Prieto-Álamo MJ, Abril N, Jurado J. Proteomic profile and protease activity in the skin mucus of greater amberjack (Seriola dumerili) infected with the ectoparasite Neobenedenia girellae—an immunological approach. Fish Shellfish Immunol, 2021, 110: 100-115,
CrossRef Google scholar
[14]
Galletti JG, Guzman M, Giordano MN. Mucosal immune tolerance at the ocular surface in health and disease. Immunology, 2017, 150: 397-407,
CrossRef Google scholar
[15]
Garcia B, Dong F, Casadei E, Resseguier J, Ma J, Cain KD, Castrillo PA, Xu Z, Salinas I. A novel organized nasopharynx-associated lymphoid tissue in teleosts that expresses molecular markers characteristic of mammalian germinal centers. J Immunol, 2022, 209: 2215-2226,
CrossRef Google scholar
[16]
Gomez D, Sunyer JO, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol, 2013, 35: 1729-1739,
CrossRef Google scholar
[17]
Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 2017, 356: 513-519,
CrossRef Google scholar
[18]
Klotz SA, Penn CC, Negvesky GJ, Butrus SI. Fungal and parasitic infections of the eye. Clin Microbiol Rev, 2000, 13: 662-685,
CrossRef Google scholar
[19]
Knop N, Knop E. Conjunctiva-associated lymphoid tissue in the human eye. Investig Ophthalmol vis Sci, 2000, 41: 1270-1279
[20]
Kong WG, Yu YY, Dong S, Huang ZY, Ding LG, Cao JF, Dong F, Zhang XT, Liu X, Xu HY, Meng KF, Su JG, Xu Z. Pharyngeal immunity in early vertebrates provides functional and evolutionary insight into mucosal hemostasis. J Immunol, 2019, 203: 3054-3067,
CrossRef Google scholar
[21]
KrishnanNair GD, Solai RP. Ocular bacterial infections: pathogenesis and diagnosis. Microb Pathog, 2022, 145
[22]
Laing C, Blanchard N, McConkey GA. Noradrenergic signaling and neuroinflammation crosstalk regulate toxoplasma gondii-induced behavioral changes. Trends Immunol, 2020, 41: 1072-1082,
CrossRef Google scholar
[23]
Lamb TD, Collin SP, Pugh EN. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci, 2007, 8: 960-975,
CrossRef Google scholar
[24]
Lamb TD, Pugh EN, Collin SP. The origin of the vertebrate eye. Evol Educ Outreach, 2008, 1: 415-426,
CrossRef Google scholar
[25]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408,
CrossRef Google scholar
[26]
MacDonald AS, Araujo MI, Pearce EJ. Immunology of parasitic helminth infections. Infect Immun, 2002, 70: 427-433,
CrossRef Google scholar
[27]
McClellan KA. Mucosal defense of the outer eye. Surv Ophthalmol, 1997, 42: 233-246,
CrossRef Google scholar
[28]
McDermott AM. Antimicrobial compounds in tears. Exp Eye Res, 2013, 117: 53-61,
CrossRef Google scholar
[29]
McGilligan VE, Gregory-Ksander MS, Li DY, Moore JE, Hodges RR, Gilmore MS, Moore TCB, Dartt DA. Staphylococcus aureus activates the NLRP3 inflammasome in human and rat conjunctival goblet cells. PLoS ONE, 2013, 8,
CrossRef Google scholar
[30]
McKay TB, Serjersen H, Hjortdal J, Zieske JD, Karamichos D. Characterization of tear immunoglobulins in a small-cohort of keratoconus patients. Sci Rep, 2020, 10: 9426,
CrossRef Google scholar
[31]
Mircheff AK, Wang YR, Jean MDS, Ding CQ, Trousdale MD, Hamm-Alvarez SF, Schechter JE. Mucosal immunity and self-tolerance in the ocular surface system. Ocul Surf, 2005, 3: 182-193,
CrossRef Google scholar
[32]
Nakao M, Tsujikura M, Ichiki S, Vo TK, Somamoto T. The complement system in teleost fish: Progress of post-homolog-hunting researches. Dev Comp Immunol, 2011, 35: 1296-1308,
CrossRef Google scholar
[33]
Oganov A, Yazdanpanah G, Jabbehdari S, Belamkar A, Pflugfelder S. Dry eye disease and blinking behaviors: a narrative review of methodologies for measuring blink dynamics and inducing blink response. Ocul Surf, 2023, 29: 166-174,
CrossRef Google scholar
[34]
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou XH, Chodosh J, Rajaiya J. Disparate entry of adenoviruses dictates differential innate immune responses on the ocular surface. Microorganisms, 2019, 7: 351,
CrossRef Google scholar
[35]
Perez VL, Mah FS, Willcox M, Pflugfelder S. Anti-inflammatories in the treatment of dry eye disease: a review. J Ocul Pharmacol Ther, 2023, 39: 89-101,
CrossRef Google scholar
[36]
Provan F, Jensen LB, Uleberg KE, Larssen E, Rajalahti T, Mullins J, Obach A. Proteomic analysis of epidermal mucus from sea lice-infected Atlantic salmon, Salmo salar L. J Fish Dis, 2013, 36: 311-321,
CrossRef Google scholar
[37]
Ramos S, Ademolue TW, Jentho E, Wu Q, Guerra J, Martins R, Pires G, Weis S, Carlos AR, Mahú I, Seixas E, Duarte D, Rajas F, Cardoso S, Sousa AGG, Lilue J, Paixão T, Mithieux G, Nogueira F, Soares MP. A hypometabolic defense strategy against malaria. Cell Metab, 2022, 34: 1183-1200.e12,
CrossRef Google scholar
[38]
Raposo AC, Portela RD, Aldrovani M, Barral TD, Cury D, Oria AP. Comparative analysis of tear composition in humans, domestic mammals, reptiles, and birds. Front Vet Sci, 2020, 7: 283,
CrossRef Google scholar
[39]
Reinoso R, Martin-Sanz R, Martino M, Mateo ME, Blanco-Salado R, Calonge M, Corell A. Topographical distribution and characterization of epithelial cells and intraepithelial lymphocytes in the human ocular mucosa. Mucosal Immunol, 2012, 5: 455-467,
CrossRef Google scholar
[40]
Ren W, Liu G, Yin J, Tan B, Wu G, Bazer FW, Yin Y. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis, 2017, 8: e2655-e2655,
CrossRef Google scholar
[41]
Salinas I, Fernandez-Montero A, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: a decade of advances. Dev Comp Immunol, 2021, 121,
CrossRef Google scholar
[600]
Schumacher MA, Hedl M, Abraham C, Bernard JK, Lozano PR, Hsieh JJ, Almohazey D, Bucar EB, Punit S, Dempsey PJ, Frey MR. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis, 2017, 8: e2622,
CrossRef Google scholar
[42]
Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol, 2013, 14: 500-508,
CrossRef Google scholar
[43]
Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol, 2018, 66: 190-194,
CrossRef Google scholar
[44]
Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY, Pflugfelder SC. Autoimmunity at the ocular surface: pathogenesis and regulation. Mucosal Immunol, 2010, 3: 425-442,
CrossRef Google scholar
[45]
Tawfik HA, Abdulhafez MH, Fouad YA, Dutton JJ. Embryologic and fetal development of the human eyelid. Ophthal Plast Recons, 2016, 32: 407-414,
CrossRef Google scholar
[500]
Tongsri P, Meng K, Liu X, Wu Z, Yin G, Wang Q, Liu M, Xu Z. The predominant role of mucosal immunoglobulin IgT in the gills of rainbow trout (Oncorhynchus mykiss) after infection with Flavobacterium columnare. Fish Shellfish Immunol, 2020, 99: 654-662,
CrossRef Google scholar
[46]
van Ginkel FW, Gulley SL, Lammers A, Hoerr FJ, Gurjar R, Toro H. Conjunctiva-associated lymphoid tissue in avian mucosal immunity. Dev Comp Immunol, 2012, 36: 289-297,
CrossRef Google scholar
[900]
Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci, 2008, 65: 1566-1584,
CrossRef Google scholar
[47]
William FW. Tang YW. Pattern recognition receptors and the innate immune network. Molecular medical microbiology, 2015 2 Cambridge Academic Press 449-474
[48]
Xu Z, Parra D, Gomez D, Salinas I, Zhang YA, Jorgensen LV, Heinecke RD, Buchmann K, LaPatra S, Sunyer JO. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci USA, 2013, 110: 13097-13102,
CrossRef Google scholar
[49]
Xu Z, Takizawa F, Parra D, Gomez D, Jorgensen LVG, LaPatra SE, Sunyer JO. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods. Nat Commun, 2016, 7: 10728,
CrossRef Google scholar
[50]
Xu GJ, Zhang JL, Ma RF, Wang C, Cheng HZ, Gong JX, Wang ZZ, Meng QL. The immune response of pIgR and Ig to Flavobacterium columnare in grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol, 2021, 117: 320-327,
CrossRef Google scholar
[51]
Yang H, Tu X, Xiao JY, Hu JB, Gu ZM. Investigations on white spot disease reveal high genetic diversity of the fish parasite, Ichthyophthirius multifiliis (Fouquet, 1876) in China. Aquaculture, 2023, 562,
CrossRef Google scholar
[52]
Yu YY, Kong WG, Yin YX, Dong F, Huang ZY, Yin GM, Dong S, Salinas I, Zhang YA, Xu Z. Mucosal immunoglobulins protect the olfactory organ of teleost fish against parasitic infection. PLoS Pathog, 2018, 14,
CrossRef Google scholar
[53]
Yu YY, Kong WG, Xu HY, Huang ZY, Zhang XT, Ding LG, Dong S, Yin GM, Dong F, Yu W, Cao JF, Meng KF, Liu X, Fu Y, Zhang XZ, Zhang YA, Sunyer JO, Xu Z. Convergent evolution of mucosal immune responses at the buccal cavity of teleost fish. iScience, 2019, 19: 821-835,
CrossRef Google scholar
[54]
Zhang YA, Salinas I, Li J, Parra D, Bjork S, Xu Z, LaPatra SE, Bartholomew J, Sunyer JO. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol, 2010, 11: 827-835,
CrossRef Google scholar
[55]
Zhang XT, Ding LG, Yu YY, Kong WG, Yin YX, Huang ZY, Zhang XZ, Xu Z. The change of teleost skin commensal microbiota is associated with skin mucosal transcriptomic responses during parasitic infection by Ichthyophthirius multifillis. Front Immunol, 2018, 9: 2972,
CrossRef Google scholar
[56]
Zhang XT, Yu YY, Xu HY, Huang ZY, Liu X, Cao JF, Meng KF, Wu ZB, Han GK, Zhan MT, Ding LG, Kong WG, Li N, Takizawa F, Sunyer JO, Xu Z. Prevailing role of mucosal Igs and B cells in teleost skin immune responses to bacterial infection. J Immunol, 2021, 206: 1088-1101,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/