Linking coral fluorescence phenotypes to thermal bleaching in the reef-building Galaxea fascicularis from the northern South China Sea

Sanqiang Gong, Jiayuan Liang, Gang Li, Lijia Xu, Yehui Tan, Xinqing Zheng, Xuejie Jin, Kefu Yu, Xiaomin Xia

Marine Life Science & Technology ›› 2023, Vol. 6 ›› Issue (1) : 155-167. DOI: 10.1007/s42995-023-00190-1
Research Paper

Linking coral fluorescence phenotypes to thermal bleaching in the reef-building Galaxea fascicularis from the northern South China Sea

Author information +
History +

Abstract

Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions, yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations, associated with fluorescence phenotypes due to GFP-like proteins, remains unclear. In this study, the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis, green and brown. The results reveal that brown G. fascicularis was more susceptible to bleaching than green G. fascicularis when exposed to a higher growth temperature of 32 °C. Both phenotypes of G. fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont, Durusdinium trenchii. However, the brown G. fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32 °C. The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected, but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G. fascicularis. Under heat stress of 32 °C, the gene encoding green fluorescent protein (GFP)-like and chromosome-associated proteins, as well as genes related to oxidative phosphorylation, cell growth and death showed lower transcriptional levels in the brown G. fascicularis compared to the green G. fascicularis. Overall, the results demonstrate that the green form of G. fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria, likely due to higher gene transcription levels and defense ability.

Keywords

Fluorescence phenotype / Thermal bleaching / Microbiome / Galaxea fascicularis / Ocean warming

Cite this article

Download citation ▾
Sanqiang Gong, Jiayuan Liang, Gang Li, Lijia Xu, Yehui Tan, Xinqing Zheng, Xuejie Jin, Kefu Yu, Xiaomin Xia. Linking coral fluorescence phenotypes to thermal bleaching in the reef-building Galaxea fascicularis from the northern South China Sea. Marine Life Science & Technology, 2023, 6(1): 155‒167 https://doi.org/10.1007/s42995-023-00190-1

References

[1]
Abe M, Watanabe T, Suzuki Y, Hidaka M. Genetic and morphological differentiation in the hermatypic coral Galaxea fascicularis in Okinawa, Japan. Plankton Benthos Res, 2008, 3: 174-179,
CrossRef Google scholar
[2]
Aihara Y, Maruyama S, Baird AH, Iguchi A, Takahashi S, Minagawa J. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc Natl Acad Sci, 2019, 116: 2118-2123,
CrossRef Google scholar
[3]
Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV. Diversity and evolution of coral fluorescent proteins. PLoS ONE, 2008, 3,
CrossRef Google scholar
[4]
Baird AH, Birrel CL, Hughes TP, Mcdonald A, Nojima S, Page CA, Prachett MS, Yamasaki H. Latitudinal variation in reproductive synchrony in Acropora assemblages: Japan vs. Australia. Galaxea J Coral Reef Stud, 2009, 11: 101-108,
CrossRef Google scholar
[5]
Barott KL, Huffmyer AS, Davidson JM, Lenz EA, Matsuda SB, Hancock JR, Innis T, Drury C, Putnam HM, Gates RD. Bleaching resistant corals retain heat tolerance following acclimatization to environmentally distinct reefs. Cold Spring Harb Lab, 2020,
CrossRef Google scholar
[6]
Benoit M, Desnues B, Mege J-L. Macrophage polarization in bacterial infections. J Immunol, 2008, 181: 3733-3739,
CrossRef Google scholar
[7]
Ben-Zvi O, Eyal G, Loya Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia, 2015, 759: 15-26,
CrossRef Google scholar
[8]
Blackall LL, Wilson B, van Oppen MJH. Coral-the world’s most diverse symbiotic ecosystem. Mol Ecol, 2015, 24: 5330-5347,
CrossRef Google scholar
[9]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120,
CrossRef Google scholar
[10]
Bollati E, D’Angelo C, Alderdice R, Pratchett M, Ziegler M, Wiedenmann J. Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Curr Biol, 2020, 30: 2433-2445.e3,
CrossRef Google scholar
[11]
Botana MT (2019) The role of Symbiodinium membrane lipids in response to heat shock: implications for coral bleaching. https://doi.org/10.13140/RG.2.2.18789.35041
[12]
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 2015, 12: 59-60,
CrossRef Google scholar
[13]
Buerger P, Alvarez-Roa C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, Edwards OR, van Oppen MJH. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv, 2020, 6: eaba2498,
CrossRef Google scholar
[14]
Buitrago-López C, Mariappan KG, Cárdenas A, Gegner HM, Voolstra CR. The Genome of the cauliflower coral Pocillopora verrucosa. Genome Biol Evol, 2020, 12: 1911-1917,
CrossRef Google scholar
[15]
Claar DC, Starko S, Tietjen KL, Epstein HE, Cunning R, Cobb KM, Baker AC, Gates RD, Baum JK. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun, 2020, 11: 6097,
CrossRef Google scholar
[16]
D’Angelo C, Denzel A, Vogt A, Matz M, Oswald F, Salih A, Nienhaus G, Wiedenmann J. Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser, 2008, 364: 97-106,
CrossRef Google scholar
[17]
D’Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs, 2012, 31: 1045-1056,
CrossRef Google scholar
[18]
Douglas AE. Coral bleaching––how and why?. Mar Pollut Bull, 2003, 46: 385-392,
CrossRef Google scholar
[20]
Dove SG, Hoegh-Guldberg O, Ranganathan S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs, 2001, 19: 197-204,
CrossRef Google scholar
[21]
Eakin CM, Sweatman HPA, Brainard RE. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs, 2019, 38: 539-545,
CrossRef Google scholar
[22]
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. Pfam: the protein families database. Nucleic Acids Res, 2014, 42: D222-D230,
CrossRef Google scholar
[23]
Fukami H, Budd AF, Paulay G, Solé-Cava A, Allen Chen C, Iwao K, Knowlton N. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature, 2004, 427: 832-835,
CrossRef Google scholar
[24]
Gittins JR, D’Angelo C, Oswald F, Edwards RJ, Wiedenmann J. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol Ecol, 2015, 24: 453-465,
CrossRef Google scholar
[25]
Gong S, Chai G, Xiao Y, Xu L, Yu K, Li J, Liu F, Cheng H, Zhang F, Liao B, Li Z. Flexible symbiotic associations of symbiodinium with five typical coral species in tropical and subtropical reef regions of the northern South China Sea. Front Microbiol, 2018, 9: 2485,
CrossRef Google scholar
[26]
Gong S, Jin X, Ren L, Tan Y, Xia X. Unraveling heterogeneity of coral microbiome assemblages in tropical and subtropical corals in the South China Sea. Microorganisms, 2020, 8: 604,
CrossRef Google scholar
[27]
Gong S, Jin X, Xiao Y, Li Z. Ocean acidification and warming lead to increased growth and altered chloroplast morphology in the Thermo-Tolerant Alga Symbiochlorum hainanensis. Front Plant Sci, 2020, 11,
CrossRef Google scholar
[28]
González-Pech RA, Stephens TG, Chen Y, Mohamed AR, Cheng Y, Shah S, Dougan KE, Fortuin MDA, Lagorce R, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biol, 2021, 19: 73,
CrossRef Google scholar
[29]
Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Change Biol, 2014, 20: 3823-3833,
CrossRef Google scholar
[30]
Gurskaya NG, Savitsky AP, Yanushevich YG, Lukyanov SA, Lukyanov KA. Color transitions in coral’s fluorescent proteins by site-directed mutagenesis. BMC Biochem, 2001,
CrossRef Google scholar
[31]
Hoogenboom MO, Campbell DA, Beraud E, DeZeeuw K, Ferrier-Pagès C. Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral Symbionts. PLoS ONE, 2012, 7,
CrossRef Google scholar
[32]
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res, 2016, 44: D286-D293,
CrossRef Google scholar
[33]
Hughes TP, Kerry JT, Baird AH, Connolly SR, Chase TJ, Dietzel A, Hill T, Hoey AS, Hoogenboom MO, Jacobson M, Kerswell A, Madin JS, Mieog A, Paley AS, Pratchett MS, Torda G, Woods RM. Global warming impairs stock-recruitment dynamics of corals. Nature, 2019, 568: 387-390,
CrossRef Google scholar
[34]
Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour, 2019, 19: 1063-1080,
CrossRef Google scholar
[35]
Iglesias-Prieto R, Matta JL, Robins WA, Trench RK. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci, 1992, 89: 10302-10305,
CrossRef Google scholar
[36]
Jarett JK, MacManes MD, Morrow KM, Pankey MS, Lesser MP. Comparative genomics of color morphs in the coral Montastraea cavernosa. Sci Rep, 2017, 7: 16039,
CrossRef Google scholar
[37]
Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol Sci, 2008, 275: 1359-1365,
CrossRef Google scholar
[38]
Kahng SE, Salih A. Localization of fluorescent pigments in a nonbioluminescent, azooxanthellate octocoral suggests a photoprotective function. Coral Reefs, 2005, 24: 435-435,
CrossRef Google scholar
[39]
Karim W, Seidi A, Hill R, Chow WS, Minagawa J, Hidaka M, Takahashi S. Novel characteristics of photodamage to PSII in a high-light-sensitive Symbiodinium Phylotype. Plant Cell Physiol, 2015, 56: 1162-1171,
CrossRef Google scholar
[40]
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549,
CrossRef Google scholar
[41]
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol, 2018, 28: 2570-2580.e6,
CrossRef Google scholar
[42]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9: 357-359,
CrossRef Google scholar
[43]
Leutenegger A, D’Angelo C, Matz MV, Denzel A, Oswald F, Salih A, Nienhaus GU, Wiedenmann J. It’s cheap to be colorful: Anthozoans show a slow turnover of GFP-like proteins. FEBS J, 2007, 274: 2496-2505,
CrossRef Google scholar
[44]
Leveque S, Afiq-Rosli L, Ip YCA, Jain SS, Huang D. Searching for phylogenetic patterns of Symbiodiniaceae community structure among Indo-Pacific Merulinidae corals. PeerJ, 2019, 7,
CrossRef Google scholar
[45]
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform, 2011, 12: 323,
CrossRef Google scholar
[46]
Li X, Liu S, Huang H, Huang L, Jing Z, Zhang C. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China. Aquat Ecosyst Health Manag, 2012, 15: 227-233,
CrossRef Google scholar
[47]
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31: 1674-1676,
CrossRef Google scholar
[48]
Liu W, Hao Z, Huang L, Chen L, Wei Q, Cai L, Liang S. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection. Parasit Vectors, 2017, 10: 86,
CrossRef Google scholar
[49]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550,
CrossRef Google scholar
[50]
Luna GM, Bongiorni L, Gili C, Biavasco F, Danovaro R. Vibrio harveyi as a causative agent of the White Syndrome in tropical stony corals: Vibrio pathogens of stony corals. Environ Microbiol Rep, 2009, 2: 120-127,
CrossRef Google scholar
[51]
Morikawa MK, Palumbi SR. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci, 2019, 116: 10586-10591,
CrossRef Google scholar
[52]
Niu W, Huang H, Lin R, Chen C-H, Shen K-N, Hsiao C-D. The complete mitogenome of the Galaxy Coral, Galaxea fascicularis (Cnidaria: Oculinidae). Mitochondrial DNA Part B, 2016, 1: 10-11,
CrossRef Google scholar
[53]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 1999, 27: 29-34,
CrossRef Google scholar
[54]
Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Change Biol, 2018, 24: e474-e484,
CrossRef Google scholar
[55]
Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D’Angelo C, Salih A, Maslakova S, Bulina M, Schirmbeck R, Nienhaus GU, Matz MV, Wiedenmann J. Contributions of host and symbiont pigments to the coloration of reef corals: coloration of reef corals. FEBS J, 2007, 274: 1102-1122,
CrossRef Google scholar
[56]
Paley AS (2012) Bleaching condition varies among Acropora millepora color morphs. https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_9A_9.pdf
[57]
Palmer CV, Roth MS, Gates RD. Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues. Biol Bull, 2009, 216: 68-74,
CrossRef Google scholar
[58]
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 2014, 30: 3123-3124,
CrossRef Google scholar
[59]
Qin Z, Yu K, Chen B, Wang Y, Liang J, Luo W, Xu L, Huang X. Diversity of symbiodiniaceae in 15 coral species from the southern South China Sea: potential relationship with coral thermal adaptability. Front Microbiol, 2019, 10: 2343,
CrossRef Google scholar
[60]
Raina J-B, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL, Motti CA. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature, 2013, 502: 677-680,
CrossRef Google scholar
[61]
Ritson-Williams R, Gates RD. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs, 2020, 39: 757-769,
CrossRef Google scholar
[62]
Roberty S, Furla P, Plumier J-C. Differential antioxidant response between two Symbiodinium species from contrasting environments: antioxidant responses of Symbiodinium sp. Plant Cell Environ, 2016, 39: 2713-2724,
CrossRef Google scholar
[63]
Satoh N, Kinjo K, Shintaku K, Kezuka D, Ishimori H, Yokokura A, Hagiwara K, Hisata K, Kawamitsu M, Koizumi K, Shinzato C, Zayasu Y (2020) Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes. G3 (Bethesda) 11:jkab018
[64]
Shinzato C, Khalturin K, Inoue J, Zayasu Y, Kanda M, Kawamitsu M, Yoshioka Y, Yamashita H, Suzuki G, Satoh N. Eighteen coral genomes reveal the evolutionary origin of Acropora strategies to accommodate environmental changes. Mol Biol Evol, 2021, 38: 16-30,
CrossRef Google scholar
[65]
Skirving WJ, Heron SF, Marsh BL, Liu G, De La Cour JL, Geiger EF, Eakin CM. The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs, 2019, 38: 547-557,
CrossRef Google scholar
[66]
Smith-Keune C, Dove S. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol, 2008, 10: 166-180,
CrossRef Google scholar
[67]
Tamames J, Puente-Sánchez F. SqueezeMeta, A highly portable, fully automatic metagenomic analysis pipeline. Front Microbiol, 2019, 9: 3349,
CrossRef Google scholar
[68]
Thompson FL, Hoste B, Thompson CC, Huys G, Swings J. The coral bleaching Vibrio shiloi Kushmaro et al. 2001 is a Later Synonym of Vibrio mediterranei Pujalte and Garay. Syst Appl Microbiol, 1986, 24: 516-519,
CrossRef Google scholar
[69]
Voolstra CR. Coral bleaching: a colorful struggle for survival. Curr Biol, 2020, 30: R768-R770,
CrossRef Google scholar
[70]
Xu L, Yu K, Li S, Liu G, Tao S, Shi Q, Chen T, Zhang H. Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea. Coral Reefs, 2017, 36: 477-487,
CrossRef Google scholar
[71]
Zhong H, Sun H, Liu R, Zhan Y, Huang X, Ju F, Zhang X-H. Comparative genomic analysis of Labrenzia aggregata (Alphaproteobacteria) strains isolated from the mariana trench: insights into the metabolic potentials and biogeochemical functions. Front Microbiol, 2021, 12,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/