Incorporating mesopelagic fish into the evaluation of conservation areas for marine living resources under climate change scenarios

Shuhao Liu, Yang Liu, Katharina Teschke, Mark A. Hindell, Rachel Downey, Briannyn Woods, Bin Kang, Shuyang Ma, Chi Zhang, Jianchao Li, Zhenjiang Ye, Peng Sun, Jianfeng He, Yongjun Tian

Marine Life Science & Technology ›› 2023, Vol. 6 ›› Issue (1) : 68-83. DOI: 10.1007/s42995-023-00188-9
Research Paper

Incorporating mesopelagic fish into the evaluation of conservation areas for marine living resources under climate change scenarios

Author information +
History +

Abstract

Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into protected areas assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006–2055) and long-term (2050–2099) periods. In addition, we assess the ecological representativeness of protected areas under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Negotiated protected area cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in protected areas, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for evaluating protected areas incorporating climate change adaptation strategies for protected areas management.

Keywords

Myctophids / Mesopelagic fish / Species distribution model / Southern Ocean / Antarctic Peninsula

Cite this article

Download citation ▾
Shuhao Liu, Yang Liu, Katharina Teschke, Mark A. Hindell, Rachel Downey, Briannyn Woods, Bin Kang, Shuyang Ma, Chi Zhang, Jianchao Li, Zhenjiang Ye, Peng Sun, Jianfeng He, Yongjun Tian. Incorporating mesopelagic fish into the evaluation of conservation areas for marine living resources under climate change scenarios. Marine Life Science & Technology, 2023, 6(1): 68‒83 https://doi.org/10.1007/s42995-023-00188-9

References

[1]
Agostini C, Patarnello T, Ashford JR, Torres JJ, Zane L, Papetti C. Genetic differentiation in the ice-dependent fish Pleuragramma antarctica along the Antarctic Peninsula. J Biogeogr, 2015, 42: 1103-1113,
CrossRef Google scholar
[2]
Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol, 2006, 43: 1223-1232,
CrossRef Google scholar
[3]
Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Chang Biol, 2004, 10: 1618-1626,
CrossRef Google scholar
[4]
Arndt CE, Swadling KM. Crustacea in Arctic and Antarctic Sea ice: distribution, diet and life history strategies. Adv Mar Biol, 2006, 51: 197-315,
CrossRef Google scholar
[5]
Astarloa A, Louzao M, Boyra G, Martinez U, Rubio A, Irigoien X, Hui FKC, Chust G, Travers-Trolet M. Identifying main interactions in marine predator-prey networks of the bay of Biscay. ICES J Mar Sci, 2019, 76: 2247-2259,
CrossRef Google scholar
[6]
Atkinson A, Hill SL, Pakhomov EA, Siegel V, Anadon R, Chiba S, Daly KL, Downie R, Fielding S, Fretwell P, Gerrish L, Hosie GW, Jessopp MJ, Kawaguchi S, Krafft BA, Loeb V, Nishikawa J, Peat HJ, Reiss CS, Ross RM, et al.. KRILLBASE: A circumpolar database of Antarctic krill and salp numerical densities, 1926–2016. Earth Syst Sci Data, 2017, 9: 193-210,
CrossRef Google scholar
[7]
Blowes SA, Chase JM, Di Franco A, Frid O, Gotelli NJ, Guidetti P, Knight TM, May F, McGlinn DJ, Micheli F, Sala E, Belmaker J. Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. J Appl Ecol, 2020, 57: 578-589,
CrossRef Google scholar
[8]
Brierley AS, Thomas D. Ecology of Southern Ocean pack ice. Adv Mar Biol, 2002, 43: 173-278
[9]
Brooks CM, Chown SL, Douglass LL, Raymond BP, Shaw JD, Sylvester ZT, Torrens CL. Progress towards a representative network of Southern Ocean protected areas. PLoS ONE, 2020, 15: 1-21,
CrossRef Google scholar
[10]
Brown JL, Bennett JR, French CM. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 2017, 5,
CrossRef Google scholar
[11]
Budic L, Didenko G, Dormann CF. Squares of different sizes: effect of geographical projection on model parameter estimates in species distribution modeling. Ecol Evol, 2016, 6: 202-211,
CrossRef Google scholar
[12]
Caccavo JA, Christiansen H, Constable AJ, Ghigliotti L, Trebilco R, Brooks CM, Cotte C, Desvignes T, Dornan T, Jones CD, Koubbi P, Saunders RA, Strobel A, Vacchi M, van de Putte AP, Walters A, Waluda CM, Woods BL, Xavier JC. Productivity and change in fish and squid in the Southern Ocean. Front Ecol Evol, 2021, 9,
CrossRef Google scholar
[13]
Caiger PE, Lefebve LS, Llopiz JK. Growth and reproduction in mesopelagic fishes: a literature synthesis. ICES J Mar Sci, 2021, 78: 765-781,
CrossRef Google scholar
[14]
Carvalho D, Rafael S, Monteiro A, Rodrigues V, Lopes M, Rocha A. How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Sci Rep, 2022, 12: 11983,
CrossRef Google scholar
[15]
CCAMLR (2002) Twenty-first Meeting of the Commission. Retrieved from https://meetings.ccamlr.org/en/ccamlr-xxi
[16]
CCAMLR (2009) Protection of the South Orkney Islands Southern Shelf. Retrieved from https://cm.ccamlr.org/measure-91-03-2009
[17]
CCAMLR (2016) Ross Sea Region Marine Protected Area. Retrieved from https://cm.ccamlr.org/measure-91-05-2016
[18]
CCAMLR (2020a) Proposal to establish a Marine Protected Area across the Weddell Sea region (Phase 1). Retrieved from https://meetings.ccamlr.org/en/ccamlr-39/06-rev-1
[19]
CCAMLR (2020b) Revised proposal for a conservation measure establishing a Marine Protected Area in Domain 1 (Western Antarctic Peninsula and South Scotia Arc). Retrieved from https://meetings.ccamlr.org/en/ccamlr-39/08-rev-1
[20]
Charlène G, Bruno D, Thomas S. Selecting environmental descriptors is critical for modelling the distribution of Antarctic benthic species. Polar Biol, 2020, 43: 1363-1381,
CrossRef Google scholar
[21]
Cherel Y, Fontaine C, Richard P, Labat JP. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr, 2010, 55: 324-332,
CrossRef Google scholar
[22]
Cheung WWL, Watson R, Pauly D. Signature of ocean warming in global fisheries catch. Nature, 2013, 497: 365-368,
CrossRef Google scholar
[23]
Clément J, Vieilledent G (2022) jSDM: Joint Species Distribution Models
[24]
Collins MA, Stowasser G, Fielding S, Shreeve R, Xavier JC, Venables HJ, Enderlein P, Cherel Y, Van de Putte A. Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea. Deep Res Part II Top Stud Oceanogr, 2012, 60: 189-198,
CrossRef Google scholar
[25]
Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DKA, Bindoff NL, Boyd PW, Brandt A, Costa DP, Davidson AT, Ducklow HW, Emmerson L, Fukuchi M, Gutt J, Hindell MA, Hofmann EE, Hosie GW, Iida T, Jacob S, et al.. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Chang Biol, 2014, 20: 3004-3025,
CrossRef Google scholar
[26]
Davison P, Lara-Lopez A, Anthony Koslow J. Mesopelagic fish biomass in the southern California current ecosystem. Deep Res Part II Top Stud Oceanogr, 2015, 112: 129-142,
CrossRef Google scholar
[27]
Dowd S, Chapman M, Koehn LE, Hoagland P. The economic tradeoffs and ecological impacts associated with a potential mesopelagic fishery in the California current. Ecol Appl, 2022, 32: 1-17,
CrossRef Google scholar
[28]
Duhamel G, Koubbi P, Ravier C. Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biol, 2000, 23: 106-112,
CrossRef Google scholar
[29]
Duhamel G, Hulley PA, Causse R, Koubbi P, Vacchi M, Pruvost P, Vigetta S, Irisson JO, Mormède S, Belchier M, Dettai A, Detrich HW, Gutt J, Jones CD, Kock KH, Lopez Abellan LJ, Van de Putte AP. biogeographic patterns of fish. Biogeographic atlas of the Southern Ocean, 2014 Cambridge Scientific Committee on Antarctic Research 328-362
[30]
Eayrs C, Li X, Raphael MN, Holland DM. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat Geosci, 2021, 14: 460-464,
CrossRef Google scholar
[31]
Ellis N, Smith SJ, Roland Pitcher C. Gradient forests: calculating importance gradients on physical predictors. Ecology, 2012, 93: 156-168,
CrossRef Google scholar
[32]
Fabri-Ruiz S, Danis B, Navarro N, Koubbi P, Laffont R, Saucède T. Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic marine protected areas under IPCC scenarios of climate change. Glob Chang Biol, 2020, 26: 2161-2180,
CrossRef Google scholar
[33]
Fredston A, Pinsky M, Selden RL, Szuwalski C, Thorson JT, Gaines SD, Halpern BS. Range edges of North American marine species are tracking temperature over decades. Glob Chang Biol, 2021, 00: 1-12
[34]
Freer JJ, Partridge JC, Tarling GA, Collins MA, Genner MJ. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. Mar Biol, 2018, 165: 1-18,
CrossRef Google scholar
[35]
Freer JJ, Tarling GA, Collins MA, Partridge JC, Genner MJ. Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Divers Distrib, 2019, 25: 1259-1272,
CrossRef Google scholar
[36]
Gaines SD, White C, Carr MH, Palumbi SR. Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA, 2010, 107: 18286-18293,
CrossRef Google scholar
[37]
Gilmour ME, Adams J, Block BA, Caselle JE, Friedlander AM, Game ET, Hazen EL, Holmes ND, Lafferty KD, Maxwell SM, McCauley DJ, Oleson EM, Pollock K, Shaffer SA, Wolff NH, Wegmann A. Evaluation of MPA designs that protect highly mobile megafauna now and under climate change scenarios. Glob Ecol Conserv, 2022, 35
[38]
Gjerde KM, Reeve LLN, Harden-Davies H, Ardron J, Dolan R, Durussel C, Earle S, Jimenez JA, Kalas P, Laffoley D, Oral N, Page R, Ribeiro MC, Rochette J, Spadone A, Thiele T, Thomas HL, Wagner D, Warner R, Wilhelm A, et al.. Protecting Earth’s last conservation frontier: scientific, management and legal priorities for MPAs beyond national boundaries. Aquat Conserv Mar Freshw Ecosyst, 2016, 26: 45-60,
CrossRef Google scholar
[39]
Gjøsaeter J, Kawaguchi K. A review of the world resources of mesopelagic fish. FAO Fish Tech Pap, 1980, 193: 1-151
[40]
Guerra TP, Santos JMFFD, Pennino MG, Lopes PFM. Damage or benefit? How future scenarios of climate change may affect the distribution of small pelagic fishes in the coastal seas of the Americas. Fish Res, 2021, 234,
CrossRef Google scholar
[41]
Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, Smith CR, Tournadre J, Xavier JC. The Southern Ocean ecosystem under multiple climate change stresses-an integrated circumpolar assessment. Glob Chang Biol, 2015, 21: 1434-1453,
CrossRef Google scholar
[42]
Hapfelmeier A, Hothorn T, Ulm K, Strobl C. A new variable importance measure for random forests with missing data. Stat Comput, 2014, 24: 21-34,
CrossRef Google scholar
[43]
Hindell MA, Reisinger RR, Ropert-Coudert Y, Hückstädt LA, Trathan PN, Bornemann H, Charrassin JB, Chown SL, Costa DP, Danis B, Lea MA, Thompson D, Torres LG, Van de Putte AP, Alderman R, Andrews-Goff V, Arthur B, Ballard G, Bengtson J, Bester MN, et al.. Tracking of marine predators to protect Southern Ocean ecosystems. Nature, 2020, 580: 87-92,
CrossRef Google scholar
[44]
Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, Acuña JL, Bode A, Echevarria F, Gonzalez-Gordillo JI, Hernandez-Leon S, Agusti S, Aksnes DL, Duarte CM, Kaartvedt S. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun, 2014, 5: 3271,
CrossRef Google scholar
[45]
Kaartvedt S, Staby A, Aksnes DL. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar Ecol Prog Ser, 2012, 456: 1-6,
CrossRef Google scholar
[46]
Koubbi P, Duhamel G, Harlay X, Eastwood PD, Durand I, Park YH. Distribution of larval Krefftichthys anderssoni (Myctophidae, Pisces) at the Kerguelen Archipelago (Southern Indian Ocean) modelled using GIS and habitat suitability. Antarctic biology in a global context, 2003 Leiden Backhuys 215-223
[47]
Koubbi P, Moteki M, Duhamel G, Goarant A, Hulley PA, O’Driscoll R, Ishimaru T, Pruvost P, Tavernier E, Hosie G. Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: results from generalized dissimilarity models. Deep Res Part II Top Stud Oceanogr, 2011, 58: 170-180,
CrossRef Google scholar
[48]
La Mesa M, Eastman JT. Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish, 2012, 13: 241-266,
CrossRef Google scholar
[49]
Lancraft TM, Reisenbichler KR, Robison BH, Hopkins TL, Torres JJ. A krill-dominated micronekton and macrozooplankton community in Croker passage, Antarctica with an estimate of fish predation. Deep Res Part II Top Stud Oceanogr, 2004, 51: 2247-2260,
CrossRef Google scholar
[50]
Lenoir S, Beaugrand G, Lecuyer É. Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Glob Chang Biol, 2011, 17: 115-129,
CrossRef Google scholar
[51]
Liu S, Liu Y, Alabia ID, Tian Y, Ye Z, Yu H, Li J, Cheng J. Impact of climate change on wintering ground of Japanese anchovy (Engraulis japonicus) using marine geospatial statistics. Front Mar Sci, 2020, 7: 604,
CrossRef Google scholar
[52]
Liu S, Tian Y, Liu Y, Alabia ID, Cheng J, Ito S. Development of a prey-predator species distribution model for a large piscivorous fish: a case study for Japanese Spanish mackerel Scomberomorus niphonius and Japanese anchovy Engraulis japonicus. Deep Res Part II Top Stud Oceanogr, 2023, 207,
CrossRef Google scholar
[53]
Ljungström G, Langbehn TJ, Jørgensen C. Light and energetics at seasonal extremes limit poleward range shifts. Nat Clim Chang, 2021, 11: 530-536,
CrossRef Google scholar
[54]
Loots C, Koubbi P, Duhamel G. Habitat modelling of Electrona antarctica (Myctophidae, Pisces) in Kerguelen by generalized additive models and geographic information systems. Polar Biol, 2007, 30: 951-959,
CrossRef Google scholar
[55]
Lourenço S, Saunders RA, Collins M, Shreeve R, Assis CA, Belchier M, Watkin JL, Xavier JC. Life cycle, distribution and trophodynamics of the lanternfish Krefftichthys anderssoni (Lönnberg, 1905) in the Scotia Sea. Polar Biol, 2017, 40: 1229-1245,
CrossRef Google scholar
[56]
McCormack SA, Melbourne-Thomas J, Trebilco R, Blanchard JL, Constable A. Alternative energy pathways in Southern Ocean food webs: insights from a balanced model of Prydz Bay, Antarctica. Deep Res Part II Top Stud Oceanogr, 2020, 174,
CrossRef Google scholar
[57]
McCormack SA, Melbourne-Thomas J, Trebilco R, Blanchard JL, Raymond B, Constable A. Decades of dietary data demonstrate regional food web structures in the Southern Ocean. Ecol Evol, 2021, 11: 227-241,
CrossRef Google scholar
[58]
Moteki M, Horimoto N, Nagaiwa R, Amakasu K, Ishimaru T, Yamaguchi Y. Pelagic fish distribution and ontogenetic vertical migration in common mesopelagic species off Lützow-Holm Bay (Indian Ocean sector, Southern Ocean) during austral summer. Polar Biol, 2009, 32: 1461-1472,
CrossRef Google scholar
[59]
Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA, Forcada J, Shreeve RS, Atkinson A, Korb R, Whitehouse MJ, Ward P, Rodhouse PG, Enderlein P, Hirst AG, Martin AR, et al.. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B Biol Sci, 2007, 362: 113-148,
CrossRef Google scholar
[60]
Naimi B, Araújo MB. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 2016, 39: 368-375,
CrossRef Google scholar
[61]
O’Leary BC, Winther-Janson M, Bainbridge JM, Aitken J, Hawkins JP, Roberts CM. Effective coverage targets for ocean protection. Conserv Lett, 2016, 9: 398-404,
CrossRef Google scholar
[62]
O’Regan SM, Archer SK, Friesen SK, Hunter KL. A global assessment of climate change adaptation in marine protected area management plans. Front Mar Sci, 2021, 8: 1-16,
CrossRef Google scholar
[500]
Orsi A, Harris U (2019) Fronts of the Antarctic circumpolar current-GIS data, Ver. 1. Retrieved from https://data.aad.gov.au/metadata/records/antarctic_circumpolar_current_fronts
[63]
Ovaskainen O, Hottola J, Shtonen J. Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 2010, 91: 2514-2521,
CrossRef Google scholar
[64]
Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C. The challenge to keep global warming below 2°C. Nat Clim Chang, 2013, 3: 4-6,
CrossRef Google scholar
[65]
Phillips SB, Aneja VP, Kang D, Arya SP. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int J Glob Environ Issues, 2006, 6: 231-252,
CrossRef Google scholar
[66]
Pinkerton MH, Smith ANH, Raymond B, Hosie GW, Sharp B, Leathwick JR, Bradford-Grieve JM. Spatial and seasonal distribution of adult Oithona similis in the Southern Ocean: predictions using boosted regression trees. Deep Res Part I Oceanogr Res Pap, 2010, 57: 469-485,
CrossRef Google scholar
[67]
Ran Q, Duan M, Wang P, Ye Z, Mou J, Wang X, Tian Y, Zhang C, Qiao H, Zhang J. Predicting the current habitat suitability and future habitat changes of Antarctic jonasfish Notolepis coatsorum in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 2022, 199,
CrossRef Google scholar
[68]
Reisinger RR, Brooks CM, Raymond B, Freer JJ, Cotté C, Xavier JC, Trathan PN, Bornemann H, Charrassin JB, Costa DP, Danis B, Hückstädt L, Jonsen ID, Lea MA, Torres L, Van de Putte A, Wotherspoon S, Friedlaender AS, Ropert-Coudert Y, Hindell M. Predator-derived bioregions in the Southern Ocean: characteristics, drivers and representation in marine protected areas. Biol Conserv, 2022, 272,
CrossRef Google scholar
[69]
Roberts CM, O’Leary BC, Mccauley DJ, Cury PM, Duarte CM, Lubchenco J, Pauly D, Sáenz-Arroyo A, Sumaila UR, Wilson RW, Worm B, Castilla JC. Marine reserves canmitigate and promote adaptation to climate change. Proc Natl Acad Sci USA, 2017, 114: 6167-6175,
CrossRef Google scholar
[70]
Roberts CM, O’Leary BC, Hawkins JP. Climate change mitigation and nature conservation both require higher protected area targets. Philos Trans R Soc B Biol Sci, 2020, 375: 1-4,
CrossRef Google scholar
[71]
Saba GK, Burd AB, Dunne JP, Hernández-León S, Martin AH, Rose KA, Salisbury J, Steinberg DK, Trueman CN, Wilson RW, Wilson SE. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol Oceanogr, 2021, 66: 1639-1664,
CrossRef Google scholar
[73]
Saunders RA, Collins MA, Ward P, Stowasser G, Hill SL, Shreeve R, Tarling GA. Predatory impact of the myctophid fish community on zooplankton in the Scotia Sea (Southern Ocean). Mar Ecol Prog Ser, 2015, 541: 45-64,
CrossRef Google scholar
[74]
Saunders RA, Collins MA, Ward P, Stowasser G, Shreeve R, Tarling GA. Distribution, population structure and trophodynamics of Southern Ocean Gymnoscopelus (Myctophidae) in the Scotia Sea. Polar Biol, 2015, 38: 287-308,
CrossRef Google scholar
[75]
Saunders RA, Hill SL, Tarling GA, Murphy EJ. Myctophid fish (Family Myctophidae) are central consumers in the food web of the Scotia Sea (Southern Ocean). Front Mar Sci, 2019, 6: 1-22,
CrossRef Google scholar
[76]
Saunders RA, Hollyman PR, Thorpe SE, Collins MA. Population characteristics of benthopelagic Gymnoscopelus nicholsi (Pisces: Myctophidae) on the continental shelf of South Georgia (Southern Ocean) during austral summer. Polar Biol, 2022, 45: 789-807,
CrossRef Google scholar
[77]
Shreeve RS, Collins MA, Tarling GA, Main CE, Ward P, Johnston NM. Feeding ecology of myctophid fishes in the northern Scotia sea. Mar Ecol Prog Ser, 2009, 386: 221-236,
CrossRef Google scholar
[78]
Sillero N, Arenas-Castro S, Enriquez-Urzelai U, Vale CG, Sousa-Guedes D, Martínez-Freiría F, Real R, Barbosa AM. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Modell, 2021, 456,
CrossRef Google scholar
[79]
Syfert MM, Smith MJ, Coomes DA. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution Models. PLoS ONE, 2013, 8,
CrossRef Google scholar
[80]
Sylvester ZT, Long MC, Brooks CM. Detecting climate signals in Southern Ocean krill growth habitat. Front Mar Sci, 2021, 8,
CrossRef Google scholar
[81]
Trebilco R, Melbourne-Thomas J, Sumner M, Wotherspoon S, Constable A. Assessing status and trends of open ocean habitats: a regionally resolved approach and Southern Ocean application. Ecol Indic, 2019, 107,
CrossRef Google scholar
[82]
Woods B, Walters A, Hindell M, Trebilco R. Isotopic insights into mesopelagic niche space and energy pathways on the southern Kerguelen Plateau. Deep Res Part II Top Stud Oceanogr, 2020, 174,
CrossRef Google scholar
[83]
Woods B, Trebilco R, Walters A, Hindell M, Duhamel G, Flores H, Moteki M, Pruvost P, Reiss C, Saunders RA, Sutton CA, Van de Putte A. Myctobase, a circumpolar database of mesopelagic fishes for new insights into deep pelagic prey fields. Sci Data, 2022, 9: 404,
CrossRef Google scholar
[84]
Woods B, van de Putte AP, Hindell MA, Raymond B, Saunders R, Walters A, Trebilco R. Species distribution models describe spatial variability in mesopelagic fish abundance in the Southern Ocean. Front Mar Sci, 2023, 9,
CrossRef Google scholar
[85]
Xavier JC, Raymond B, Jones DC, Griffiths H. Biogeography of cephalopods in the Southern Ocean using habitat suitability prediction models. Ecosystems, 2016, 19: 220-247,
CrossRef Google scholar
[86]
Yang G, Atkinson A, Hill SL, Guglielmo L, Granata A, Li C. Changing circumpolar distributions and isoscapes of Antarctic krill: Indo-Pacific habitat refuges counter long-term degradation of the Atlantic sector. Limnol Oceanogr, 2021, 66: 272-287,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/