Regulation of filamentous phage Pf4 activation by oxidative stress in Pseudomonas aeruginosa

Zixian Huang , Xinqiao Zhang , Shituan Lin , Jiayu Gu , Cong Liu , Mingzhang Wen , Yunxue Guo

mLife ›› 2025, Vol. 4 ›› Issue (4) : 437 -446.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (4) : 437 -446. DOI: 10.1002/mlf2.70031
ORIGINAL RESEARCH

Regulation of filamentous phage Pf4 activation by oxidative stress in Pseudomonas aeruginosa

Author information +
History +
PDF

Abstract

The filamentous prophage Pf4 is activated to produce phage virions during Pseudomonas aeruginosa biofilm formation, a process crucial for maintaining biofilm architecture and enhancing pathogenicity. However, the environmental cues triggering Pf4 activation have been inadequately explored. In this study, we discovered that oxidative stress, a significant stressor encountered by pathogens in biofilms or within eukaryotic hosts, triggers the production of the filamentous phage Pf4 in P. aeruginosa MPAO1 through OxyR. Under oxidative stress, the expression of oxyR is induced, leading to increased OxyR binding to the promoter region of the Pf4 excisionase gene xisF4, thereby facilitating Pf4 prophage excision and virion production. Thus, our study elucidates a mechanism by which bacteria exploit cytotoxic oxidative stress as a potent stimulant to activate the filamentous phage Pf4 within biofilms.

Keywords

biofilm / oxidative stress / prophage activation / Pseudomonas aeruginosa / regulation

Cite this article

Download citation ▾
Zixian Huang, Xinqiao Zhang, Shituan Lin, Jiayu Gu, Cong Liu, Mingzhang Wen, Yunxue Guo. Regulation of filamentous phage Pf4 activation by oxidative stress in Pseudomonas aeruginosa. mLife, 2025, 4(4): 437-446 DOI:10.1002/mlf2.70031

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022; 20: 608-620.

[2]

Raghupathi PK, Liu W, Sabbe K, Houf K, Burmølle M, Sørensen SJ. Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan. Front Microbiol. 2018; 8: 2649.

[3]

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016; 14: 563-575.

[4]

Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002; 184: 1140-1154.

[5]

Boles BR, Singh PK. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA. 2008; 105: 12503-12508.

[6]

Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée JY, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013; 9: e1003144.

[7]

Ciofu O, Moser C, Jensen , Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 2022; 20: 621-635.

[8]

Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens. 2022; 11: 300.

[9]

Ismail MH, Michie KA, Goh YF, Noorian P, Kjelleberg S, Duggin IG, et al. The repressor C protein, Pf4r, controls superinfection of Pseudomonas aeruginosa PAO1 by the Pf4 filamentous phage and regulates host gene expression. Viruses. 2021; 13: 1614.

[10]

Guo Y, Tang K, Sit B, Gu J, Chen R, Shao X, et al. Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module. Nat Commun. 2024; 15: 7244.

[11]

Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature. 2001; 413: 860-864.

[12]

Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 2009; 3: 271-282.

[13]

Little JW. LexA cleavage and other self-processing reactions. J Bacteriol. 1993; 175: 4943-4950.

[14]

Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D, Katznelson E, et al. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe. 2015; 18: 549-559.

[15]

Secor PR, Michaels LA, Smigiel KS, Rohani MG, Jennings LK, Hisert KB, et al. Filamentous bacteriophage produced by Pseudomonas aeruginosa alters the inflammatory response and promotes noninvasive infection in vivo. Infect Immun. 2017; 85: e00648-16.

[16]

Wolfgang MC, Schwartzkopf CM, Robinson AJ, Ellenbecker M, Faith DR, Schmidt AK, et al. Tripartite interactions between filamentous Pf4 bacteriophage, Pseudomonas aeruginosa, and bacterivorous nematodes. PLoS Pathog. 2023; 19: e1010925.

[17]

Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, et al. Pf bacteriophage and their impact on Pseudomonas virulence, mammalian immunity, and chronic infections. Front Immunol. 2020; 11: 244.

[18]

Pei T, Luo H, Wang Y, Li H, Wang X, Zhang Y, et al. Filamentous prophage Pf4 promotes genetic exchange in Pseudomonas aeruginosa. ISME J. 2024; 8: wrad025.

[19]

Tang M, Yang R, Zhuang Z, Han S, Sun Y, Li P, et al. Divergent molecular strategies drive evolutionary adaptation to competitive fitness in biofilm formation. ISME J. 2024; 18: wrae135.

[20]

Guo Y, Lin S, Chen R, Gu J, Tang K, Nie Z, et al. A reverse transcriptase controls prophage genome reduction to promote phage dissemination in Pseudomonas aeruginosa biofilms. Cell Rep. 2024; 43: 114883.

[21]

Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, et al. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol. 2019; 111: 495-513.

[22]

Li Y, Liu X, Tang K, Wang W, Guo Y, Wang X. Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa. Microb Biotechnol. 2020; 13: 1132-1144.

[23]

Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 2016; 291: 12547-12555.

[24]

Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem. 2016; 80: 7-12.

[25]

Liu C, Shi R, Jensen MS, Zhu J, Liu X, et al. The global regulation of c-di-GMP and cAMP in bacteria. mLife 2024; 3: 42-56.

[26]

Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014; 18: 96-104.

[27]

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010; 8: 623-633.

[28]

Cai YM, Yu KW, Liu JH, Cai Z, Zhou ZH, Liu Y, et al. The c-di-GMP phosphodiesterase PipA (PA0285) regulates autoaggregation and Pf4 bacteriophage production in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2022; 88: e0003922.

[29]

Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL, et al. Inhibition of PQS signaling by the Pf bacteriophage protein PfsE enhances viral replication in. Mol Microbiol. 2024; 121: 116-128.

[30]

Giallonardi G, Letizia M, Mellini M, Frangipani E, Halliday N, Heeb S, et al. Alkyl-quinolone-dependent quorum sensing controls prophage-mediated autolysis in Pseudomonas aeruginosa colony biofilms. Front Cell Infect Microbiol. 2023; 13: 1183681.

[31]

Hui JGK, Mai-Prochnow A, Kjelleberg S, McDougald D, Rice SA. Environmental cues and genes involved in establishment of the superinfective Pf4 phage of Pseudomonas aeruginosa. Front Microbiol. 2014; 5: 654.

[32]

Platt MD, Schurr MJ, Sauer K, Vazquez G, Kukavica-Ibrulj I, Potvin E, et al. Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol. 2008; 190: 2739-2758.

[33]

Gambino M, Cappitelli F. Mini-review: biofilm responses to oxidative stress. Biofouling. 2016; 32: 167-178.

[34]

Novaes RD, Teixeira AL, de Miranda AS. Oxidative stress in microbial diseases: pathogen, host, and therapeutics. Oxid Med Cell Longevity. 2019; 2019: 8159562.

[35]

Wei Q, Le Minh PN, Dötsch A, Hildebrand F, Panmanee W, Elfarash A, et al. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res. 2012; 40: 4320-4333.

[36]

Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z, Warrener P, et al. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe. 2019; 25: 526-536.e4.

[37]

Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010; 5: 1663-1674.

[38]

Wang W, Li Y, Tang K, Lin J, Gao X, Guo Y, et al. Filamentous prophage capsid proteins contribute to superinfection exclusion and phage defence in Pseudomonas aeruginosa. Environ Microbiol. 2022; 24: 4285-4298.

[39]

Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol. 2000; 182: 4533-4544.

[40]

Heo YJ, Chung IY, Cho WJ, Lee BY, Kim JH, Choi KH, et al. The major catalase gene (katA) of Pseudomonas aeruginosa PA14 is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide. J Bacteriol. 2010; 192: 381-390.

[41]

Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol. 2010; 192: 1113-1121.

[42]

Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW, Rasko DA, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019; 201: e00595-00518.

[43]

Knezevic P, Voet M, Lavigne R. Prevalence of Pf1-like (pro)phage genetic elements among Pseudomonas aeruginosa isolates. Virology. 2015; 483: 64-71.

[44]

Li C, Wally H, Miller SJ, Lu CD. The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. J Bacteriol. 2009; 191: 6211-6218.

[45]

Petrova OE, Schurr JR, Schurr MJ, Sauer K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol. 2011; 81: 767-783.

[46]

Martínez E, Campos-Gómez J. Pf filamentous phage requires UvrD for replication in Pseudomonas aeruginosa. mSphere. 2016; 1: e00104-e00115.

[47]

Bisht K, Moore JL, Caprioli RM, Skaar EP, Wakeman CA. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes. 2021; 7: 22.

[48]

Binnenkade L, Teichmann L, Thormann KM. Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms. Appl Environ Microbiol. 2014; 80: 5304-5316.

[49]

Wang X, Kim Y, Wood TK. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J. 2009; 3: 1164-1179.

[50]

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29: e45.

[51]

Ni M, Lin J, Gu J, Lin S, He M, Guo Y. Antitoxin CrlA of CrlTA toxin-antitoxin system in a clinical isolate Pseudomonas aeruginosa inhibits lytic phage infection. Front Microbiol. 2022; 13: 892021.

[52]

Choi KH, Schweizer HP. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol. 2005; 5: 30.

[53]

Guo Y, Li Y, Zhan W, Wood TK, Wang X. Resistance to oxidative stress by inner membrane protein ElaB is regulated by OxyR and RpoS. Microb Biotechnol. 2019; 12: 392-404.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/