Extensive lateral gene transfer between proto-eukaryotes and Heimdallarchaeia suggests their close association during eukaryogenesis

Patrick Forterre

mLife ›› 2025, Vol. 4 ›› Issue (4) : 345 -362.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (4) : 345 -362. DOI: 10.1002/mlf2.70030
REVIEW

Extensive lateral gene transfer between proto-eukaryotes and Heimdallarchaeia suggests their close association during eukaryogenesis

Author information +
History +
PDF

Abstract

It has been proposed by Ettema and colleagues, in the two-domain framework for the tree of life, that Eukarya emerged from Heimdallarchaeia, as sister group to Hodarchaeales. Looking at the individual trees of the protein markers used by these authors, I notice that Eukarya are only sister to Hodarchaeales or other Heimdallarchaeia in a minority of trees, whereas they are located far apart from these Asgard archaea in most other trees. Examination of single trees also reveals massive gene transfers from Crenarchaeota and/or Korachaeota to hyperthermophilic Njordarchaeales, explaining why their belonging to Asgard archaea is sometimes difficult to recover. Finally, I discuss several points raised by Ettema and colleagues, such as the phylogeny of Asgard archaea and the hyperthermophilic nature of their last common ancestor. The patchy localization of Eukarya in individual trees relative to Hodarchaeales and other Heimdallarchaeia, as well as the patchy distribution of eukaryotic signature proteins among Asgard archaea, is best explained by suggesting that multiple gene transfers take place between proto-eukaryotes and Asgard archaea in both directions. This suggests that the co-evolution of proto-eukaryotes and Asgard archaea has played a major role in eukaryogenesis but also in shaping the physiology and diversification of Asgard archaea.

Keywords

Asgard archaea / eukaryogenesis / eukaryotic specific proteins / Hodarchaeales / reverse gyrase

Cite this article

Download citation ▾
Patrick Forterre. Extensive lateral gene transfer between proto-eukaryotes and Heimdallarchaeia suggests their close association during eukaryogenesis. mLife, 2025, 4(4): 345-362 DOI:10.1002/mlf2.70030

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 1977; 74: 5088-5090.

[2]

Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, et al. The phylogeny of prokaryotes. Science. 1980; 209: 457-463.

[3]

Huet J, Schnabel R, Sentenac A, Zillig W. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J. 1983; 2: 1291-1294.

[4]

Albers SV, Forterre P, Prangishvili D, Schleper C. The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries. Nat Rev Microbiol. 2013; 11: 713-719.

[5]

Forterre P. Microbes from Hell. Chicago, IL: Chicago University Press; 2016.

[6]

Forterre P. Carl Woese: still ahead of our time. mLife. 2022; 1: 359-367.

[7]

Quammen D. The tangle tree: a radical new history of life. New York: Simon & Schuster eds; 2018.

[8]

Pace NR. Problems with “procaryote”. J Bacteriol. 2009; 191: 2008-2010.

[9]

Pace NR. Rebuttal: the modern concept of the procaryote. J Bacteriol. 2009; 191: 2006-2007.

[10]

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990; 87: 4576-4579.

[11]

Gaïa M, Da Cunha V, Forterre P. The tree of life. In: Rampelotto PH, editor. Molecular Mechanisms of Microbial Evolution: Grand Challenges in Biology and Biotechnology. New York City: Springer; 2018.

[12]

Forterre P. The common ancestor of archaea and eukarya was not an archaeon. Archaea. 2013; 2013: 372396.

[13]

Forterre P. The universal tree of life: an update. Front Microbiol. 2015; 6: 1-18.

[14]

Forterre P. The last universal common ancestor of ribosome-encoding organisms: portrait of LUCA. J Mol Evol. 2024; 92: 550-583.

[15]

Nasir A, Kim KM, Da Cunha V, Caetano-Anollés G. Arguments reinforcing the three-domain view of diversified cellular life. Archaea. 2016; 2016: 1851865.

[16]

Nasir A, Mughal F, Caetano-Anollés G. The tree of life describes a tripartite cellular world. BioEssays. 2021; 43: e2000343.

[17]

Da Cunha V, Gaia M, Gadelle D, Nasir A, Forterre P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 2017; 13: e1006810.

[18]

Da Cunha V, Gaïa M, Forterre P. The expanding Asgard archaea and their elusive relationships with Eukarya. mLife. 2022; 1: 3-12.

[19]

Caetano-Anollés G, Mughal F. The Tree of Life describes a tripartite cellular world: neglected support from genome structure and codon usage and the fallacy of alignment-dependent phylogenetic interpretations. BioEssays. 2021; 43: e2100130.

[20]

Lake JA. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature. 1988; 331: 184-186.

[21]

Margulis L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA. 1996; 93: 1071-1076.

[22]

Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature. 2004; 431: 152-155.

[23]

Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015; 521: 173-179.

[24]

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol. 2017; 15: 711-723.

[25]

Zhou Z, Liu Y, Anantharaman K, Li M. The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. mLife. 2022; 1: 374-381.

[26]

López-García P, Moreira D. The symbiotic origin of the eukaryotic cell. C R Biol. 2023; 346: 55-73.

[27]

Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev. 2023; 87: e0018621.

[28]

Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol. 2023; 8: 1008-1017.

[29]

Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature. 2024; 633: 295-305.

[30]

Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol. 2010; 8: 743-752.

[31]

Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017; 541: 353-358.

[32]

Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature. 2020; 577: 519-525.

[33]

Rodrigues-Oliveira T, Wollweber F, Ponce-Toledo RI, Xu J, Rittmann SKMR, Klingl A, et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature. 2023; 613: 332-339.

[34]

Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature. 2021; 593: 553-557.

[35]

Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2021; 65: 818-829.

[36]

Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, Schön ME, et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature. 2023; 618: 992-999.

[37]

López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol. 2020; 5: 655-667.

[38]

Martinez-Gutierrez CA, Aylward FO. Phylogenetic signal, congruence, and uncertainty across bacteria and Archaea. Mol Biol Evol. 2021; 38: 5514-5527.

[39]

Narrowe AB, Spang A, Stairs CW, Caceres EF, Baker BJ, Miller CS, et al. Complex evolutionary history of translation elongation factor 2 and diphthamide biosynthesis in archaea and parabasalids. Genome Biol Evol. 2018; 10: 2380-2393.

[40]

Rinke C, Chuvochina M, Mussig AJ, Chaumeil PA, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the genome taxonomy database. Nat Microbiol. 2021; 6: 946-959.

[41]

Imachi H, Nobu MK, Kato S, Takaki Y, Miyazaki M, Miyata M, et al. Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage ‘Asgard’ archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov. Int J Syst Evol Microbiol. 2024; 74: 006435.

[42]

Lloyd KG, Tahon G. Science depends on nomenclature, but nomenclature is not science. Nat Rev Microbiol. 2022; 20: 123-124.

[43]

Panda A, Islam ST, Sharma G. Harmonizing prokaryotic nomenclature: fixing the fuss over phylum name flipping. mBio. 2022; 13: e0097022.

[44]

Köstlbacher S, van Hooff JJE, Panagiotou K, Tamarit D, Anda V, Appler KE, et al. Structure-based inference of eukaryotic complexity in Asgard archaea. bioRxiv. 2024; https://doi.org/10.1101/2024.07.03.601958

[45]

Tamarit D, Köstlbacher S, Appler KE, Panagiotou K, De Anda V, Rinke C, et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst Appl Microbiol. 2024; 47: 126525.

[46]

Liu Y, Li M. The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea. mLife. 2022; 1: 218-222.

[47]

Da Cunha V, Gaia M, Nasir A, Forterre P. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet. 2018; 14: e1007215.

[48]

Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol. 2008; 6: 245-252.

[49]

Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012; 14: 3122-3145.

[50]

Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T, et al. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota. Res Microbiol. 2013; 164: 425-438.

[51]

Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol. 2020; 4: 138-147.

[52]

Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020; 63: 886-897.

[53]

Rangel LT, Fournier GP. Fast-evolving alignment sites are highly informative for reconstructions of deep Tree of Life phylogenies. Microorganisms. 2023; 11: 2499.

[54]

Matte-Tailliez O, Brochier C, Forterre P, Philippe H. Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol. 2002; 19: 631-639.

[55]

Petitjean C, Deschamps P, López-García P, Moreira D, Brochier-Armanet C. Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life. Mol Biol Evol. 2015; 32: 1242-1254.

[56]

Huang WC, Probst M, Hua ZS, Szánthó LL, Szöllősi GJ, Ettema TJG, et al. Phylogenomic analyses reveal that Panguiarchaeum is a clade of genome-reduced Asgard archaea. bioRxiv. 2025; https://doi.org/10.1101/2025.02.13.637844

[57]

Carilo I, Senju Y, Yokoyama T, Robinson RC. Intercompatibility of eukaryotic and Asgard archaea ribosome-translocon machineries. J Biol Chem. 2024; 300: 107673.

[58]

Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, et al. Diversity, origin, and evolution of the ESCRT systems. mBio. 2024; 15: e0033524.

[59]

Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res. 2020; 48: 10142-10156.

[60]

Da Cunha V, Gaia M, Ogata H, Jaillon O, Delmont TO, Forterre P. Giant viruses encode novel types of actins possibly related to the origin of eukaryotic actin: the viractins. Mol Biol Evol. 2022; 39: msac022.

[61]

Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019; 10: 1822.

[62]

Farag IF, Zhao R, Biddle JF. “Sifarchaeota,” a novel asgard phylum from costa rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Microbiol. 2021; 87: e02584-20.

[63]

Aouad M, Flandrois JP, Jauffrit F, Gouy M, Gribaldo S, Brochier-Armanet C. A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea. BMC Ecol Evol. 2022; 22: 1.

[64]

Valentin-Alvarado LE, Appler KE, De Anda V, Schoelmerich MC, West-Roberts J, Kivenson V, et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat Commun. 2024; 15: 6384.

[65]

Appler KE, Lingford JP, Gong X, Panagiotou K, Leão P, Langwig M, et al. Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor. bioRxiv. 2024; https://doi.org/10.1101/2024.07.04.601786

[66]

Jüttner M, Ferreira-Cerca S. Looking through the lens of the ribosome biogenesis evolutionary history: possible implications for archaeal phylogeny and eukaryogenesis. Mol Biol Evol. 2022; 39: msac054.

[67]

Forterre P. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 2002; 18: 236-237

[68]

Catchpole RJ, Forterre P. The evolution of reverse gyrase suggests a nonhyperthermophilic last universal common ancestor. Mol Biol Evol. 2019; 36: 2737-2747.

[69]

Brock TD. Thermophilic microorganisms and life at high temperature. New York, Heidelberg: Springer-Verlag; 1978.

[70]

Lu Z, Xia R, Zhang S, Pan J, Liu Y, Wolf YI, et al. Evolution of optimal growth temperature in Asgard archaea inferred from the temperature dependence of GDP binding to EF-1A. Nat Commun. 2024; 15: 515.

[71]

Imachi H, Nobu MK, Ishii S, Hirakata Y, Ikuta T, Isagi Y, et al Eukaryotes’ closest relatives are internally simple syntrophic archaea. bioRxiv. 2025; https://doi.org/10.1101/2025.02.26.640444

[72]

Zhang J, Feng X, Li M, Liu Y, Liu M, Hou LJ, et al. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature. 2025; 642: 990-998.

[73]

Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA. 1999; 96: 3801-3806.

[74]

Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 2005; 6: R42.

[75]

Baker BA, McCarthy CGP, López-García P, Leroy RB, Susko E, Roger AJ, et al. Phylogenomic analyses indicate the archaeal superphylum DPANN originated from free-living euryarchaeal-like ancestors. Nat Microbiol. 2025; 10: 1593-1604.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/