The global genomic landscape of hypervirulent Klebsiella pneumoniae from 1932 to 2021

Xiaoyuan Jiang , Shuangshuang Li , Cuidan Li , Zhe Yin , Fangzhou Chen , Lingfei Hu , Tianyu Lu , Xiaoqiang Liu , Yinyu Wang , Guannan Ma , Xiaoyu Wang , Fei Chen , Dongsheng Zhou

mLife ›› 2025, Vol. 4 ›› Issue (4) : 378 -396.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (4) : 378 -396. DOI: 10.1002/mlf2.70029
ORIGINAL RESEARCH

The global genomic landscape of hypervirulent Klebsiella pneumoniae from 1932 to 2021

Author information +
History +
PDF

Abstract

The global spread of hypervirulent Klebsiella pneumoniae (hvKp) poses a serious public health threat. In this study, we conducted genomic epidemiology analysis on 2097 global hvKp isolates, including our 900 isolates sequenced through the Illumina platform (177 of them fully sequenced through PacBio platform), representing the most comprehensive genomic analysis of hvKp to date. Our results identified six dominant clonal groups (CGs), particularly including CG23 and CG258, and 17 major virulence determinant combinations (VDCs) comprising 10 virulence gene profiles (VGPs), four types of virulence plasmids, four ICEKp variants, Tn7399, and all_island. Each CG harbored distinct advantageous VDCs, indicating strong genomic correlation and co-evolution. Additionally, the phylogeny and evolutionary history of CG23 and CG258 were characterized in depth. Notably, 41.58% of the 2097 isolates were multidrug-resistant and 33.29% were carbapenem-resistant, indicating serious antimicrobial resistance. Overall, our study provides a global genomic landscape of hvKp, emphasizing the genetic basis for their global dissemination and the need for precise prevention and control.

Keywords

antimicrobial resistance (AMR) / hypervirulent K. pneumoniae (hvKp) / virulence determinant combinations (VDCs) / virulence gene profiles (VGPs) / virulence-related accessory genetic elements (VAGEs)

Cite this article

Download citation ▾
Xiaoyuan Jiang, Shuangshuang Li, Cuidan Li, Zhe Yin, Fangzhou Chen, Lingfei Hu, Tianyu Lu, Xiaoqiang Liu, Yinyu Wang, Guannan Ma, Xiaoyu Wang, Fei Chen, Dongsheng Zhou. The global genomic landscape of hypervirulent Klebsiella pneumoniae from 1932 to 2021. mLife, 2025, 4(4): 378-396 DOI:10.1002/mlf2.70029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016; 80: 629-661.

[2]

Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019; 32: e00001-19.

[3]

Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA. 2015; 112: E3574-E3581.

[4]

Zhu J, Wang T, Chen L, Du H. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol. 2021; 12: 642484.

[5]

Bulger J, MacDonald U, Olson R, Beanan J, Russo TA. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKP1 after pulmonary but not subcutaneous challenge. Infect Immun. 2017; 85: e00093-17.

[6]

Pu D, Zhao J, Chang K, Zhuo X, Cao B. “Superbugs” with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull. 2023; 68: 2658-2670.

[7]

Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular epidemiology of hypervirulent K. pneumoniae and problems of health-care associated infections. Bull Exp Biol Med. 2022; 172: 507-522.

[8]

Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae- clinical and molecular perspectives. J Intern Med. 2020; 287: 283-300.

[9]

Chou HC, Lee CZ, Ma LC, Fang CT, Chang SC, Wang JT. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun. 2004; 72: 3783-3792.

[10]

Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, Tsai HC, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 2009; 191: 4492-4501.

[11]

Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004; 337: 189-198.

[12]

Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom. 2018; 4: e000196.

[13]

Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021; 12: 4188.

[14]

Marcoleta AE, Berríos-Pastén C, Nuñez G, Monasterio O, Lagos R. Klebsiella pneumoniae asparagine tDNAs are integration hotspots for different genomic islands encoding microcin E492 production determinants and other putative virulence factors present in hypervirulent strains. Front Microbiol. 2016; 7: 849.

[15]

Nassif X, Honoré N, Vasselon T, Cole ST, Sansonetti PJ. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol. 1989; 3: 1349-1359.

[16]

Tang HL, Chiang MK, Liou WJ, Chen YT, Peng HL, Chiou CS, et al. Correlation between Klebsiella pneumoniae carrying pLVPK-derived loci and abscess formation. Eur J Clin Microbiol Infect Dis. 2010; 29: 689-698.

[17]

Nassif X, Sansonetti PJ. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun. 1986; 54: 603-608.

[18]

Tian D, Wang M, Zhou Y, Hu D, Ou HY, Jiang X. Genetic diversity and evolution of the virulence plasmids encoding aerobactin and salmochelin in Klebsiella pneumoniae. Virulence. 2021; 12: 1323-1333.

[19]

Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018; 56: e00776-18.

[20]

Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS, Engelthaler DM, et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio. 2015; 6: e00630.

[21]

Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan YH, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun. 2018; 9: 2703.

[22]

Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014; 38: 720-760.

[23]

Tang M, Kong X, Hao J, Liu J. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. 2020; 11: 581543.

[24]

Han YL, Wen XH, Zhao W, Cao XS, Wen JX, Wang JR, et al. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. 2022; 13: 1003783.

[25]

Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020; 18: 344-359.

[26]

Dong N, Yang X, Chan EWC, Zhang R, Chen S. Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022; 79: 103998.

[27]

Tian D, Liu X, Chen W, Zhou Y, Hu D, Wang W, et al. Prevalence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae under divergent evolutionary patterns. Emerg Microbes Infect. 2022; 11: 1936-1949.

[28]

Zhao D, Shi Q, Hu D, Fang L, Mao Y, Lan P, et al. The emergence of novel sequence type strains reveals an evolutionary process of intraspecies clone shifting In ICU-spreading carbapenem-resistant Klebsiella pneumoniae. Front Microbiol. 2021; 12: 691406.

[29]

Yang X, Sun Q, Li J, Jiang Y, Li Y, Lin J, et al. Molecular epidemiology of carbapenem-resistant hypervirulent Klebsiella pneumoniae in China. Emerg Microbes Infect. 2022; 11: 841-849.

[30]

Wang R, Zhang A, Sun S, Yin G, Wu X, Ding Q, et al. Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11-KL64. Nat Commun. 2024; 15: 67.

[31]

Sanikhani R, Moeinirad M, Shahcheraghi F, Lari A, Fereshteh S, Sepehr A, et al. Molecular epidemiology of hypervirulent Klebsiella pneumoniae: a systematic review and meta-analysis. Iran J Microbiol. 2021; 13: 257-265.

[32]

Lan P, Jiang Y, Zhou J, Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist. 2021; 25: 26-34.

[33]

Yu WL, Lee MF, Chang MC, Chuang YC. Intrapersonal mutation of rmpA and rmpA2: a reason for negative hypermucoviscosity phenotype and low virulence of rmpA-positive Klebsiella pneumoniae isolates. J Glob Antimicrob Resist. 2015; 3: 137-141.

[34]

Andrade BGN, de Veiga Ramos N, Marin MFA, Fonseca EL, Vicente ACP. The genome of a clinical Klebsiella variicola strain reveals virulence-associated traits and a pl9-like plasmid. FEMS Microbiol Lett. 2014; 360: 13-16.

[35]

Kochan TJ, Nozick SH, Valdes A, Mitra SD, Cheung BH, Lebrun-Corbin M, et al. Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence. Nat Commun. 2023; 14: 7962.

[36]

Shen D, Ma G, Li C, Jia X, Qin C, Yang T, et al. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae sequence type 23 strain with a rare blaCTX-M-24-harboring virulence plasmid. Antimicrob Agents Chemother. 2019; 63: e02273-18.

[37]

Lai YC, Lu MC, Hsueh PR. Hypervirulence and carbapenem resistance: two distinct evolutionary directions that led high-risk Klebsiella pneumoniae clones to epidemic success. Expert Rev Mol Diagn. 2019; 19: 825-837.

[38]

Jia X, Li C, Chen F, Li X, Jia P, Zhu Y, et al. Genomic epidemiology study of Klebsiella pneumoniae causing bloodstream infections in China. Clin Transl Med. 2021; 11: e624.

[39]

Fu J, Zhang J, Yang L, Ding N, Yue L, Zhang X, et al. Precision methylome and In vivo methylation kinetics characterization of Klebsiella pneumoniae. Genomics Insights. 2022; 20: 418-434.

[40]

Rojas LJ, Weinstock GM, De La Cadena E, Diaz L, Rios R, Hanson BM, et al. An analysis of the epidemic of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: convergence of two evolutionary mechanisms creates the “perfect storm”. J Infect Dis. 2017; 217: 82-92.

[41]

Li C, Jiang X, Yang T, Ju Y, Yin Z, Yue L, et al. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae in China. Genomics Insights. 2022; 20: 1154-1167.

[42]

Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018; 18: 37-46.

[43]

Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010; 74: 434-452.

[44]

Xu Y, Zhang J, Wang M, Liu M, Liu G, Qu H, et al. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae. Genome Med. 2021; 13: 119.

[45]

Li F, Wang J, Jiang Y, Guo Y, Liu N, Xiao S, et al. Adaptive evolution compensated for the plasmid fitness costs brought by specific genetic conflicts. Pathogens. 2023; 12: 137.

[46]

Kong Y, Sun Q, Chen H, Draz MS, Xie X, Zhang J, et al. Transmission dynamics of carbapenem-resistant Klebsiella pneumoniae sequence type 11 strains carrying capsular loci KL64 and rmpA/rmpA2 genes. Front Microbiol. 2021; 12: 736896.

[47]

Zhang Y, Jin L, Ouyang P, Wang Q, Wang R, Wang J, et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother. 2020; 75: 327-336.

[48]

Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, et al. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog. 2021; 17: e1009376.

[49]

Yin-Ching C, Jer-Horng S, Ching-Nan L, Ming-Chung C. Cloning of a gene encoding a unique haemolysin from Klebsiella pneumoniae and its potential use as a species-specific gene probe. Microb Pathog. 2002; 33: 1-6.

[50]

Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, et al. Finished bacterial genomes from shotgun sequence data. Genome Res. 2012; 22: 2270-2277.

[51]

Sun J, Shen X, Li M, He L, Guo S, Skoog G, et al. Changes in patterns of antibiotic use in Chinese public hospitals (2005-2012) and a benchmark comparison with Sweden in 2012. J Glob Antimicrob Resist. 2015; 3: 95-102.

[52]

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19: 455-477.

[53]

Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016; 8: 12-24.

[54]

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357-359.

[55]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25: 2078-2079.

[56]

Manuel JG, Heins HB, Crocker S, Neidich JA, Sadzewicz L, Tallon L, et al. High coverage highly accurate long-read sequencing of a mouse neuronal cell line using the PacBio Revio sequencer. bioRxiv. 2023. https://doi.org/10.1101/2023.06.06.543940

[57]

Feng X, Cheng H, Portik D, Li H. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat Methods. 2022; 19: 671-674.

[58]

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019; 37: 540-546.

[59]

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9: e112963.

[60]

Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014; 6: 90.

[61]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10: 421.

[62]

Xu Y, Jing Y, Hu L, Cheng Q, Gao H, Zhang Z, et al. IncFIB-4.1 and IncFIB-4.2 single-replicon plasmids: small backbones with large accessory regions. Infect Drug Resist. 2022; 15: 1191-1203.

[63]

Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011; 12: 402.

[64]

Delcher AL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002; 30: 2478-2483.

[65]

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30: 2068-2069.

[66]

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015; 31: 3691-3693.

[67]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020; 37: 1530-1534.

[68]

Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012; 8: e1002453.

[69]

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012; 22: 568-576.

[70]

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22: 2688-2690.

[71]

Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015; 11: e1004041.

[72]

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018; 4: vey016.

[73]

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018; 67: 901-904.

[74]

Insua JL, Llobet E, Moranta D, Pérez-Gutiérrez C, Tomás A, Garmendia J, et al. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81: 3552-3565.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/