The antibacterial effect of tellurite is achieved through intracellular acidification and magnesium disruption

Wanli Peng , Yali Fu , Yanqiu Wang , Zixin Deng , Daijie Chen , Shuangjun Lin , Rubing Liang

mLife ›› 2025, Vol. 4 ›› Issue (4) : 423 -436.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (4) : 423 -436. DOI: 10.1002/mlf2.70028
ORIGINAL RESEARCH

The antibacterial effect of tellurite is achieved through intracellular acidification and magnesium disruption

Author information +
History +
PDF

Abstract

Antibiotic resistance has caused a severe reduction in bacteriostatic action and clinical therapy, demanding effective agents or strategies. Tellurite is an ancient yet powerful antimicrobial agent with an ambiguous mechanism. In this study, we uncovered the underlying action mechanism of tellurite by disturbing the cellular homeostasis of proton and metal ions. Tellurite, entering into Escherichia coli MG1655 cells, synchronously imported excess protons and induced intracellular acidification. The intracellular pH declined upon exposure to 0.5 μg/ml of tellurite (the minimal inhibitory concentration, MIC) for 15 min, decreasing from 7.5 to 6.3 in 3 h. A dramatic decrease (31%–73%) in cellular magnesium contents and cytoplastic Mg2+ levels occured early after a 5-min treatment with tellurite, primarily via the enhanced efflux by FocB/MdtL/MdtG and the reduced influx by MgtA/CorA. Disruption of cellular Mg2+ homeostasis by tellurite severely hindered ribosome assembly, retarded protein synthesis, and disturbed cellular metabolism. This action logic was applicable to various pathogens. Furthermore, a combination of trace tellurite (0.01/0.1× MIC) synergistically augmented the efficacy of antibiotics at sublethal doses (0.5× MIC) against hypervirulent and drug-resistant bacterial strains in vitro and in vivo, significantly enhancing the survival rate and the wound-healing rate of infected animals. These discoveries regarding this metalloid present a promising perspective for combating stubborn and drug-resistant pathogens.

Keywords

antibacterial mechanism / intracellular acidification / magnesium homeostasis / synergistic effect / tellurite

Cite this article

Download citation ▾
Wanli Peng, Yali Fu, Yanqiu Wang, Zixin Deng, Daijie Chen, Shuangjun Lin, Rubing Liang. The antibacterial effect of tellurite is achieved through intracellular acidification and magnesium disruption. mLife, 2025, 4(4): 423-436 DOI:10.1002/mlf2.70028

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Antimicrobial resistance: global report on surveillance. World Health Organization; 2014. Available from: https://www.who.int/publications/i/item/9789241564748.

[2]

Fleming A. On the specific antibacterial properties of penicillin and potassium tellurite. Incorporating a method of demonstrating some bacterial antagonisms. J Pathol Bacteriol. 1932; 35: 831-842.

[3]

Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev. 2009; 33: 820-832.

[4]

Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, et al. Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One. 2007; 2: e211.

[5]

Morales EH, Pinto CA, Luraschi R, Muñoz-Villagrán CM, Cornejo FA, Simpkins SW, et al. Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat Commun. 2017; 8: 15320.

[6]

Anaganti N, Basu B, Gupta A, Joseph D, Apte SK. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans. Proteomics. 2015; 15: 89-97.

[7]

Sandoval JM, Levêque P, Gallez B, Vásquez CC, Buc Calderon P. Tellurite-induced oxidative stress leads to cell death of murine hepatocarcinoma cells. BioMetals. 2010; 23: 623-632.

[8]

Ashraf MW, Haider SI, Solangi AR, Memon AF. Toxicity of tellurium and its compounds. Phys Sci Rev. 2023; 8: 4375-4390.

[9]

Kanjee U, Houry WA. Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol. 2013; 67: 65-81.

[10]

Harold FM. Ion currents and physiological functions in microorganisms. Annu Rev Microbiol. 1977; 31: 181-203.

[11]

Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet. 2013; 47: 625-646.

[12]

Klein DJ, Moore PB, Steitz TA. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA. 2004; 10: 1366-1379.

[13]

Cunrath O, Bumann D. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science. 2019; 366: 995-999.

[14]

De Oliveira DMP, Forde BM, Phan MD, Steiner B, Zhang B, Zuegg J, et al. Rescuing tetracycline class antibiotics for the treatment of multidrug-resistant Acinetobacter baumannii pulmonary infection. mBio. 2022; 13: e03517-e03521.

[15]

Santucci P, Aylan B, Botella L, Bernard EM, Bussi C, Pellegrino E, et al. Visualizing pyrazinamide action by live single-cell imaging of phagosome acidification and Mycobacterium tuberculosis pH homeostasis. mBio. 2022; 13: e00117-e00122.

[16]

Akbari A, Yurkovich JT, Zielinski DC, Palsson BO. The quantitative metabolome is shaped by abiotic constraints. Nat Commun. 2021; 12: 3178.

[17]

Lee DD, Galera-Laporta L, Bialecka-Fornal M, Moon EC, Shen Z, Briggs SP, et al. Magnesium flux modulates ribosomes to increase bacterial survival. Cell. 2019; 177: 352-360.e13.

[18]

Elías AO, Abarca MJ, Montes RA, Chasteen TG, Pérez-Donoso JM, Vásquez CC. Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. MicrobiologyOpen. 2012; 1: 259-267.

[19]

Richard H, Foster JW. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol. 2004; 186: 6032-6041.

[20]

Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, et al. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell. 2007; 26: 165-174.

[21]

Cheung J, Bingman CA, Reyngold M, Hendrickson WA, Waldburger CD. Crystal structure of a functional dimer of the PhoQ sensor domain. J Biol Chem. 2008; 283: 13762-13770.

[22]

Pontes MH, Sevostyanova A, Groisman EA. When too much ATP is bad for protein synthesis. J Mol Biol. 2015; 427: 2586-2594.

[23]

Pontes MH, Yeom J, Groisman EA. Reducing ribosome biosynthesis promotes translation during low Mg2+ stress. Mol Cell. 2016; 64: 480-492.

[24]

Coates ARM, Hu Y, Holt J, Yeh P. Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Rev Anti Infect Ther. 2020; 18: 5-15.

[25]

Roemhild R, Bollenbach T, Andersson DI. The physiology and genetics of bacterial responses to antibiotic combinations. Nat Rev Microbiol. 2022; 20: 478-490.

[26]

Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 2022; 73: 197-211.

[27]

Ribeiro AI, Dias AM, Zille A. Synergistic effects between metal nanoparticles and commercial antimicrobial agents: a review. ACS Appl Nano Mater. 2022; 5: 3030-3064.

[28]

Molina-Quiroz RC, Muñoz-Villagrán CM, de la Torre E, Tantaleán JC, Vásquez CC, Pérez-Donoso JM. Enhancing the antibiotic antibacterial effect by sublethal tellurite concentrations: tellurite and cefotaxime act synergistically in Escherichia coli. PLoS One. 2012; 7: e35452.

[29]

Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM, Turner RJ. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology. 2005; 151: 3181-3195.

[30]

Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013; 11: 371-384.

[31]

Foster JW. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol. 2004; 2: 898-907.

[32]

Malki A, Le H-T, Milles S, Kern R, Caldas T, Abdallah J, et al. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J Biol Chem. 2008; 283: 13679-13687.

[33]

Hakobyan B, Pinske C, Sawers G, Trchounian A, Trchounian K. pH and a mixed carbon-substrate spectrum influence FocA- and FocB-dependent, formate-driven H2 production in Escherichia coli. FEMS Microbiol Lett. 2018; 365: fny233.

[34]

Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, et al. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol. 2006; 6: 89.

[35]

Zeinert R, Martinez E, Schmitz J, Senn K, Usman B, Anantharaman V, et al. Structure-function analysis of manganese exporter proteins across bacteria. J Biol Chem. 2018; 293: 5715-5730.

[36]

Meng YL, Liu Z, Rosen BP. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem. 2004; 279: 18334-18341.

[37]

Waters LS. Bacterial manganese sensing and homeostasis. Curr Opin Chem Biol. 2020; 55: 96-102.

[38]

Dominguez DC. Calcium signalling in bacteria. Mol Microbiol. 2004; 54: 291-297.

[39]

Véscovi EG, Soncini FC, Groisman EA. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell. 1996; 84: 165-174.

[40]

Nelson DL, Kennedy EP. Magnesium transport in Escherichia coli. J Biol Chem. 1971; 246: 3042-3049.

[41]

Moon K, Gottesman S. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol. 2009; 74: 1314-1330.

[42]

Wang H, Yin X, Wu Orr M, Dambach M, Curtis R, Storz G. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc Natl Acad Sci USA. 2017; 114: 5689-5694.

[43]

Bruna RE, Kendra CG, Pontes MH. Coordination of phosphate and magnesium metabolism in bacteria. Adv Exp Med Biol. 2022; 1362: 135-150.

[44]

Yin X, Wu Orr M, Wang H, Hobbs EC, Shabalina SA, Storz G. The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol Microbiol. 2019; 111: 131-144.

[45]

Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2009; 11: 50-61.

[46]

Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature. 2016; 532: 375-379.

[47]

Pontieri P, Hartings H, Di Salvo M, Massardo DR, De Stefano M, Pizzolante G, et al. Mitochondrial ribosomal proteins involved in tellurite resistance in yeast Saccharomyces cerevisiae. Sci Rep. 2018; 8: 12022.

[48]

van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, et al. Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol. 1996; 178: 5438-5446.

[49]

Ilag LL, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol. 1991; 173: 3408-3413.

[50]

Jaffe EK, Ali S, Mitchell LW, Taylor KM, Volin M, Markham GD. Characterization of the role of the stimulatory magnesium of Escherichia coli porphobilinogen synthase. Biochemistry. 1995; 34: 244-251.

[51]

Pormohammad A, Greening D, Turner RJ. Synergism inhibition and eradication activity of silver nitrate/potassium tellurite combination against Pseudomonas aeruginosa biofilm. J Antimicrob Chemother. 2022; 77: 1635-1644.

[52]

Yamaguchi A, Ohmori H, Kaneko-Ohdera M, Nomura T, Sawai T. Delta pH-dependent accumulation of tetracycline in Escherichia coli. Antimicrob Agents Chemother. 1991; 35: 53-56.

[53]

Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol. 2003; 50: 219-230.

[54]

Moffatt JH, Harper M, Boyce JD. Mechanisms of polymyxin resistance. Adv Exp Med Biol. 2019; 1145: 55-71.

[55]

Ferrer MD, Rodriguez JC, Álvarez L, Artacho A, Royo G, Mira A. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J Appl Microbiol. 2017; 122: 640-650.

[56]

Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010; 328: 627-629.

[57]

Kolodkin-Gal I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, et al. RETRACTED: a self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell. 2012; 149: 684-692.

[58]

Chua SL, Sivakumar K, Rybtke M, Yuan M, Andersen JB, Nielsen TE, et al. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. Sci Rep. 2015; 5: 10052.

[59]

Ruhal R, Kataria R. Biofilm patterns in Gram-positive and Gram-negative bacteria. Microbiol Res. 2021; 251: 126829.

[60]

Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017; 41: 252-275.

[61]

Krapp F, Morris AR, Ozer EA, Hauser AR. Virulence characteristics of carbapenem-resistant Klebsiella pneumoniae strains from patients with necrotizing skin and soft tissue infections. Sci Rep. 2017; 7: 13533.

[62]

Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics. 2019; 11: 1104-1114.

[63]

Lu Y. Identification and roles of photosystem II assembly, stability, and repair factors in Arabidopsis. Front Plant Sci. 2016; 7: 168.

[64]

Nguyen TTH, Kikuchi T, Tokunaga T, Iyoda S, Iguchi A. Diversity of the tellurite resistance gene operon in Escherichia coli. Front Microbiol. 2021; 12: 681175.

[65]

Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The Klebsiella pneumoniaeter operon enhances stress tolerance. Infect Immun. 2023; 91: e0055922.

[66]

Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015; 81: 2506-2514.

[67]

Luo Q, Yang X, Yu S, Shi H, Wang K, Xiao L, et al. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat Struct Mol Biol. 2017; 24: 469-474.

[68]

Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009; 6: 275-277.

[69]

Qin D, Fredrick K. Analysis of polysomes from bacteria. Methods Enzymol. 2013; 530: 159-172.

[70]

Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3: 163-175.

[71]

O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998; 30: 295-304.

[72]

Zarkan A, Caño-Muñiz S, Zhu J, Al Nahas K, Cama J, Keyser UF, et al. Indole pulse signalling regulates the cytoplasmic pH of E. coli in a memory-like manner. Sci Rep. 2019; 9: 3868.

[73]

Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, et al. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. J Am Chem Soc. 2016; 138: 10945-10949.

[74]

Hu XL, Chu L, Dong X, Chen GR, Tang T, Chen D, et al. Multivalent glycosheets for double light-driven therapy of multidrug-resistant bacteria on wounds. Adv Funct Mater. 2019; 29: 1806986.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/