Mechanistic insights into the T6SS of multi-drug-resistant Aeromonas hydrophila and its role in competition and pathogenesis

Hao Wang , Ying Liu , Zhao Wang , PeiYi Xia , Zhiwei Li , Ming Liu , Yang Fu

mLife ›› 2025, Vol. 4 ›› Issue (4) : 363 -377.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (4) : 363 -377. DOI: 10.1002/mlf2.70018
ORIGINAL RESEARCH

Mechanistic insights into the T6SS of multi-drug-resistant Aeromonas hydrophila and its role in competition and pathogenesis

Author information +
History +
PDF

Abstract

Aeromonas hydrophila, an opportunistic pathogen, often encodes Type VI Secretion System (T6SS) genes. However, the specific functions of T6SS, particularly in the context of clinical strains, remain poorly understood. In this study, we characterize a multi-drug-resistant strain, AH54, which possesses a complete and functional T6SS, composed of a structural cluster and two homologous auxiliary clusters (Aux1 and Aux2). Each auxiliary cluster encodes two distinct effector proteins: a rearrangement hotspot (Rhs) protein and a proline–alanine–arginine repeat (PAAR) protein—Rhs1/PAAR1 in Aux1 and Rhs2/PAAR2 in Aux2. Our findings reveal that AH54 assembles a fully operational T6SS capable of delivering these effectors, driving inter-bacterial antagonism. Interestingly, the T6SS activity in AH54 is temperature-regulated, with enhanced secretion and antibacterial activity at lower temperatures. To protect itself from self-intoxication, AH54 produces immunity proteins (Tsi1–Tsi4) that neutralize the toxic effectors. While PAAR1 and PAAR2 are critical for Hcp secretion, immunity proteins Tsi3 and Tsi4 do not cross-protect against PAAR effectors, suggesting distinct roles for each PAAR protein in optimizing AH54's competitive fitness. In addition, using a Dictyostelium discoideum phagocytosis model, we demonstrate that Rhs2, a metal ion-dependent DNase effector, plays a crucial role in protecting AH54 from eukaryotic predation via T6SS. These findings highlight the pivotal role of T6SS in bacterial competition and pathogenesis, offering new insights into the virulence mechanisms of A. hydrophila.

Keywords

Aeromonas species / anti-eukaryotic virulence / microbial interaction / T6SS

Cite this article

Download citation ▾
Hao Wang, Ying Liu, Zhao Wang, PeiYi Xia, Zhiwei Li, Ming Liu, Yang Fu. Mechanistic insights into the T6SS of multi-drug-resistant Aeromonas hydrophila and its role in competition and pathogenesis. mLife, 2025, 4(4): 363-377 DOI:10.1002/mlf2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010; 23: 35-73.

[2]

Rasmussen-Ivey CR, Hossain MJ, Odom SE, Terhune JS, Hemstreet WG, Shoemaker CA, et al. Classification of a hypervirulent Aeromonas hydrophila pathotype responsible for epidemic outbreaks in warm-water fishes. Front Microbiol. 2016; 7: 1615.

[3]

Zhou Y, Yu L, Nan Z, Zhang P, Kan B, Yan D, et al. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC Infect Dis. 2019; 19: 158.

[4]

Ponnusamy D, Kozlova EV, Sha J, Erova TE, Azar SR, Fitts EC, et al. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc Natl Acad Sci USA. 2016; 113: 722-727.

[5]

Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol. 2016; 7: 1337.

[6]

Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system. Vet Res. 2020; 51: 71.

[7]

Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the dictyostelium host model system. ‘Proc Natl Acad Sci USA. 2006; 103: 1528-1533.

[8]

Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 2014; 15: 9-21.

[9]

Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, et al. Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 2014; 1843: 1664-1673.

[10]

Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015; 13: 343-359.

[11]

Bönemann G, Pietrosiuk A, Mogk A. Tubules and donuts: a type VI secretion story. Mol Microbiol. 2010; 76: 815-821.

[12]

Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 2009; 28: 315-325.

[13]

Skaar EP, Wang T, Si M, Song Y, Zhu W, Gao F, et al. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog. 2015; 11: e1005020.

[14]

Luo Z, Liang X, Pei T-T, Li H, Zheng H-Y, Luo H, et al. VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS Pathog. 2021; 17: e1010116.

[15]

Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, et al. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun. 2021; 12: 423.

[16]

Liu M, Zhao MY, Wang H, Wang ZH, Wang Z, Liu Y, et al. Pesticin-like effector VgrG3(cp) targeting peptidoglycan delivered by the Type VI secretion system contributes to Vibrio cholerae interbacterial competition. Microbiol Spectr. 2023; 11: e0426722.

[17]

Liu M, Wang H, Liu Y, Tian M, Wang Z, Shu RD, et al. The phospholipase effector Tle1(Vc) promotes Vbrio cholerae virulence by killing competitors and impacting gene expression. Gut Microbes. 2023; 15: 2241204.

[18]

Hagan M, Pankov G, Gallegos-Monterrosa R, Williams DJ, Earl C, Buchanan G, et al. Rhs NADase effectors and their immunity proteins are exchangeable mediators of inter-bacterial competition in Serratia. Nat Commun. 2023; 14: 6061.

[19]

Alcoforado Diniz J, Liu YC, Coulthurst SJ. Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol. 2015; 17: 1742-1751.

[20]

Storey D, McNally A, Åstrand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog. 2020; 16: e1007969.

[21]

Wang N, Wu Y, Pang M, Liu J, Lu C, Liu Y. Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2015; 46: 297-304.

[22]

Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, et al. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res. 2023; 266: 127220.

[23]

Li J, Wu Z, Hou Y, Zhang Y-A, Zhou Y. Fur functions as an activator of T6SS-mediated bacterial dominance and virulence in Aeromonas hydrophila. Front Microbiol. 2023; 13: 1099611.

[24]

Cheng AT, Ottemann KM, Yildiz FH. Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system. PLoS Pathog. 2015; 11: e1004933.

[25]

Li S, Liu Q, Duan C, Li J, Sun H, Xu L, et al. c-di-GMP inhibits the DNA binding activity of H-NS in Salmonella. Nat Commun. 2023; 14: 7502.

[26]

Kitaoka M, Miyata ST, Brooks TM, Unterweger D, Pukatzki S. VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic. J Bacteriol. 2011; 193: 6471-6482.

[27]

Guckes KR, Cecere AG, Williams AL, McNeil AE, Miyashiro T. The bacterial enhancer binding protein VasH promotes expression of a type VI secretion system in Vibrio fischeri during symbiosis. J Bacteriol. 2020; 202: e00777-19.

[28]

Li J, Wu Z, Wu C, Chen D-D, Zhou Y, Zhang Y-A. VasH contributes to virulence of Aeromonas hydrophila and is necessary to the T6SS-mediated bactericidal effect. Front Vet Sci. 2021; 8: 793458.

[29]

Mariano G, Trunk K, Williams DJ, Monlezun L, Strahl H, Pitt SJ, et al. A family of type VI secretion system effector proteins that form ion-selective pores. Nat Commun. 2019; 10: 5484.

[30]

Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. Microbiology. 2023; 169: 001376.

[31]

Manera K, Caro F, Li H, Pei TT, Hersch SJ, Mekalanos JJ, et al. Sensing of intracellular Hcp levels controls T6SS expression In Vibrio cholerae. Proc Natl Acad Sci USA. 2021; 118: e2104813118.

[32]

Jiang X, Li H, Ma J, Li H, Ma X, Tang Y, et al. Role of type VI secretion system in pathogenic remodeling of host gut microbiota during Aeromonas veronii infection. ISME J. 2024; 18: wrae053.

[33]

Pei T-T, Li H, Liang X, Wang Z-H, Liu G, Wu L-L, et al. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nat Commun. 2020; 11: 1865.

[34]

Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, et al. Characterization of lysozyme-like effector TseP reveals the dependence of type VI secretion system (T6SS) secretion on effectors in Aeromonas dhakensis strain SSU. Appl Environ Microbiol. 2021; 87: e0043521.

[35]

Liang X, Moore R, Wilton M, Wong MJQ, Lam L, Dong TG. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci USA. 2015; 112: 9106-9111.

[36]

Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol. 2006; 188: 8272-8282.

[37]

Pang M, Jiang J, Xie X, Wu Y, Dong Y, Kwok AHY, et al. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 2015; 5: 9833.

[38]

Jana B, Fridman CM, Bosis E, Salomon D. A modular effector with a DNase domain and a marker for T6SS substrates. Nat Commun. 2019; 10: 3595.

[39]

Tang L, Dong S, Rasheed N, Wu HW, Zhou N, Li H, et al. Vibrio parahaemolyticus prey targeting requires autoproteolysis-triggered dimerization of the type VI secretion system effector RhsP. Cell Rep. 2022; 41: 111732.

[40]

Baslé A, Hewitt L, Koh A, Lamb HK, Thompson P, Burgess JG, et al. Crystal structure of NucB, a biofilm-degrading endonuclease. Nucleic Acids Res. 2018; 46: 473-484.

[41]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018; 46: W200-W204.

[42]

Ren A, Jia M, Liu J, Zhou T, Wu L, Dong T, et al. Acquisition of T6SS effector TseL contributes to the emerging of novel epidemic strains of Pseudomonas aeruginosa. Microbiol Spectr. 2023; 11: e0330822.

[43]

Edwards RA, Keller LH, Schifferli DM. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene. 1998; 207: 149-157.

[44]

Santin YG, Doan T, Journet L, Cascales E. Cell width dictates type VI secretion tail length. Curr Biol. 2019; 29: 3707-3713.e3.

[45]

Vettiger A, Basler M. Type VI secretion system substrates are transferred and reused among sister cells. Cell. 2016; 167: 99-110.e12.

[46]

Liang X, Zheng HY, Zhao YJ, Zhang YQ, Pei TT, Cui Y, et al. VgrG spike dictates PAAR requirement for the assembly of the type VI secretion system. J Bacteriol. 2023; 205: e0035622.

[47]

Pissaridou P, Allsopp LP, Wettstadt S, Howard SA, Mavridou DAI, Filloux A. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci USA. 2018; 115: 12519-12524.

[48]

Wang N, Liu J, Pang M, Wu Y, Awan F, Liles MR, et al. Diverse roles of Hcp family proteins in the environmental fitness and pathogenicity of Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol. 2018; 102: 7083-7095.

[49]

Kennedy NW, Comstock LE. Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare. Cell Host Microbe. 2024; 32: 794-803.

[50]

Sun Y, Wang L, Zhang M, Jie J, Guan Q, Fu J, et al. Acinetobacter nosocomialis utilizes a unique type VI secretion system to promote its survival in niches with prey bacteria. mBio. 2024; 15: e0146824.

[51]

Froquet R, Lelong E, Marchetti A, Cosson P. Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc. 2008; 4: 25-30.

[52]

Jiang K, Li W, Tong M, Xu J, Chen Z, Yang Y, et al. Bacteroides fragilis ubiquitin homologue drives intraspecies bacterial competition in the gut microbiome. Nat Microbiol. 2024 Jan; 9: 70-84.

[53]

Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. 2017; 19: 345-360.

[54]

Jurėnas D, Rey M, Byrne D, Chamot-Rooke J, Terradot L, Cascales E. Salmonella antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of EF-Tu P-loop. Nucleic Acids Res. 2022; 50: 13114-13127.

[55]

González-Magaña A, Tascón I, Altuna-Alvarez J, Queralt-Martín M, Colautti J, Velázquez C, et al. Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane. Nat Commun. 2023; 14: 7808.

[56]

Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci USA. 2013; 110: 2623-2628.

[57]

Zhu L, Xu L, Wang C, Li C, Li M, Liu Q, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci USA. 2021; 118: e2103526118.

[58]

Luo J, Chu X, Jie J, Sun Y, Guan Q, Li D, et al. Acinetobacter baumannii kills fungi via a type VI DNase effector. mBio. 2023; 14: e0342022.

[59]

Khan SR, Gaines J, Roop RM, Farrand SK. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol. 2008; 74: 5053-5062.

[60]

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9: 676-682.

[61]

Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011; 27: 1009-1010.

[62]

Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu S, et al. The conserved domain database in 2023. Nucleic Acids Res. 2023; 51: D384-D388.

[63]

Fey P, Kowal AS, Gaudet P, Pilcher KE, Chisholm RL. Protocols for growth and development of Dictyostelium discoideum. Nat Protoc. 2007; 2: 1307-1316.

[64]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018; 35: 1547-1549.

[65]

Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023; 51: W587-W592.

[66]

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772-780.

[67]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32: 268-274.

[68]

Söhngen C, Podstawka A, Bunk B, Gleim D, Vetcininova A, Reimer LC, et al. BacDive—the bacterial diversity metadatabase in 2016. Nucleic Acids Res. 2016; 44: D581-D585.

[69]

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024; 630: 493-500.

[70]

Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42: W320-W324.

[71]

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022; 19: 679-682.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/