PDF
Abstract
Microorganisms dominate marine environments in the polar oceans and are known to harbor greater diversity and abundance than was once thought, and yet, little is known about their biogeographic distribution patterns in marine sediments at a broad spatial scale. In this study, we conducted extensive sampling of marine sediments along a latitudinal transect spanning 2500 km from the Bering Sea to the Arctic Ocean to investigate the geographical distribution patterns of bacteria, archaea, and fungi. Our findings revealed that the community similarities of bacteria and fungi decay at similar rates with increasing geographical distance (slope: −0.005 and −0.002), which are much lower than the decay rate of archaeal communities (slope: −0.012). Notably, microbial richness and community composition showed significant differences in the region of 75−80°N compared to other regions in 60−75°N. Salinity, temperature, pH, ammonium nitrogen, and total organic carbon are key factors that significantly affect microbial community variations. Furthermore, bacterial co-occurrence networks showed more complex interactions but lower modularity than fungal counterparts. This study provides crucial insights into the spatial distribution patterns of bacteria, archaea, and fungi in the Arctic marine sediments and will be critical for a better understanding of microbial global distribution and ecological functions.
Keywords
Arctic Ocean
/
biogeography
/
co-occurrence pattern
/
marine microorganisms
/
spatial distribution
Cite this article
Download citation ▾
Jianxing Sun, Hongbo Zhou, Haina Cheng, Zhu Chen, Yuguang Wang.
Archaea show different geographical distribution patterns compared to bacteria and fungi in Arctic marine sediments.
mLife, 2025, 4(2): 205-218 DOI:10.1002/mlf2.70006
| [1] |
Zhang H, Huang X, Huang L, Bao F, Xiong S, Wang K, et al. Microeukaryotic biogeography in the typical subtropical coastal waters with multiple environmental gradients. Sci Total Environ. 2018; 635: 618-628.
|
| [2] |
Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009; 459: 193-199.
|
| [3] |
Sommeria-Klein G, Watteaux R, Ibarbalz FM, Pierella Karlusich JJ, Iudicone D, Bowler C, et al. Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science. 2021; 374: 594-599.
|
| [4] |
Martiny JBH, Bohannan BJM, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006; 4: 102-112.
|
| [5] |
Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol. 2007; 16: 867-880.
|
| [6] |
Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine. Proc Natl Acad Sci USA. 2008; 105: 7774-7778.
|
| [7] |
Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016; 10: 596-608.
|
| [8] |
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015; 348: 1261359.
|
| [9] |
Sunagawa S, Acinas SG, Bork P, Bowler C, Acinas SG, Babin M, et al. Tara oceans: towards global ocean ecosystems biology. Nat Rev Microbiol. 2020; 18: 428-445.
|
| [10] |
Junger PC, Sarmento H, Giner CR, Mestre M, Sebastián M, Morán XAG, et al. Global biogeography of the smallest plankton across ocean depths. Sci Adv. 2023; 9: eadg9763.
|
| [11] |
Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'Dwyer J, et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 2013; 7: 1669-1677.
|
| [12] |
Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci USA. 2020; 117: 27587-27597.
|
| [13] |
Villarino E, Watson JR, Chust G, Woodill AJ, Klempay B, Jonsson B, et al. Global beta diversity patterns of microbial communities in the surface and deep ocean. Glob Ecol Biogeogr. 2022; 31: 2323-2336.
|
| [14] |
Wu W, Tang W, He Z, Wang L. Archaea, bacteria and protists share a depth-decay relationship of community similarity in deep oceans. J Plankton Res. 2024; 46: 398-402.
|
| [15] |
Tisthammer KH, Cobian GM, Amend AS. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 2016; 19: 39-46.
|
| [16] |
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019; 179: 1068-1083.e21.
|
| [17] |
Zhang Z, Zhang Q, Chen B, Yu Y, Wang T, Xu N, et al. Global biogeography of microbes driving ocean ecological status under climate change. Nat Commun. 2024; 15: 4657.
|
| [18] |
Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016; 10: 596-608.
|
| [19] |
Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 2011; 6: e24570.
|
| [20] |
Zhou J, Song X, Zhang C-Y, Chen G-F, Lao Y-M, Jin H, et al. Distribution patterns of microbial community structure along a 7000-mile latitudinal transect from the Mediterranean Sea across the Atlantic Ocean to the Brazilian Coastal Sea. Microb Ecol. 2018; 76: 592-609.
|
| [21] |
Liu J, Yang H, Zhao M, Zhang X-H. Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China. Syst Appl Microbiol. 2014; 37: 578-589.
|
| [22] |
Chen C-TA, Andreev A, Kim K-R, Yamamoto M. Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. J Oceanogr. 2004; 60: 17-44.
|
| [23] |
Thomas H, Schiettecatte L-S, Suykens K, Koné YJM, Shadwick EH, Prowe AEF, et al. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences. 2009; 6: 267-274.
|
| [24] |
Liu J, Liu X, Wang M, Qiao Y, Zheng Y, Zhang X-H. Bacterial and archaeal communities in sediments of the north Chinese marginal seas. Microb Ecol. 2015; 70: 105-117.
|
| [25] |
Liu L, Sun F, Zhao H, Mi H, He S, Chen Y, et al. Compositional changes of sedimentary microbes in the Yangtze River Estuary and their roles in the biochemical cycle. Sci Total Environ. 2021; 760: 143383.
|
| [26] |
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Distinct strategies of the habitat generalists and specialists in the Arctic sediments: assembly processes, co-occurrence patterns, and environmental implications. Marine Poll Bull. 2024; 205: 116603.
|
| [27] |
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Bacterial abundant taxa exhibit stronger environmental adaption than rare taxa in the Arctic Ocean sediments. Mar Environ Res. 2024; 199: 106624.
|
| [28] |
Bienhold C, Zinger L, Boetius A, Ramette A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS One. 2016; 11: e0148016.
|
| [29] |
Feng B-W, Li X-R, Wang J-H, Hu Z-Y, Meng H, Xiang L-Y, et al. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol. 2009; 70: 236-248.
|
| [30] |
Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 2011; 6: e24570.
|
| [31] |
Danovaro R, Snelgrove PVR, Tyler P. Challenging the paradigms of deep-sea ecology. Trends Ecol Evolut. 2014; 29: 465-475.
|
| [32] |
Schauer R, Bienhold C, Ramette A, Harder J. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J. 2010; 4: 159-170.
|
| [33] |
Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D'Hondt S. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016; 10: 979-989.
|
| [34] |
Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K, Ramette A, et al. In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J. 2018; 13: 197-213.
|
| [35] |
Bienhold C, Boetius A, Ramette A. The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J. 2012; 6: 724-732.
|
| [36] |
Rantanen M, KarpechkoA Y, Lipponen A, Nordling K, Hyvärinen O, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ. 2022; 3: 168.
|
| [37] |
Taylor PC, Boeke RC, Boisvert LN, Feldl N, Henry M, Huang Y, et al. Process drivers, inter-model spread, and the path forward: a review of amplified Arctic warming. Front Earth Sci. 2022; 9: 758361.
|
| [38] |
Previdi M, Smith KL, Polvani LM. Arctic amplification of climate change: a review of underlying mechanisms. Environ Res Lett. 2021; 16: 093003.
|
| [39] |
Traving SJ, Kellogg CTE, Ross T, McLaughlin R, Kieft B, Ho GY, et al. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun Biol. 2021; 4: 1217.
|
| [40] |
Neukermans G, Oziel L, Babin M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Global Change Biol. 2018; 24: 2545-2553.
|
| [41] |
Tiedje JM, Bruns MA, Casadevall A, Criddle CS, Eloe-Fadrosh E, Karl DM, et al. Microbes and climate change: a research prospectus for the future. mBio. 2022; 13: e00800−22.
|
| [42] |
Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P. Climate change microbiology—problems and perspectives. Nat Rev Microbiol. 2019; 17: 391-396.
|
| [43] |
Jiao S, Chen W, Wei G. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol. 2017; 26: 5305-5317.
|
| [44] |
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012; 6: 343-351.
|
| [45] |
Mo Y, Zhang W, Wilkinson DM, Yu Z, Xiao P, Yang J. Biogeography and co-occurrence patterns of bacterial generalists and specialists in three subtropical marine bays. Limnol Oceanogr. 2021; 66: 793-806.
|
| [46] |
Gad M, Hou L, Li J, Wu Y, Rashid A, Chen N, et al. Distinct mechanisms underlying the assembly of microeukaryotic generalists and specialists in an anthropogenically impacted river. Sci Total Environ. 2020; 748: 141434.
|
| [47] |
Jiao S, Lu Y. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Global Change Biol. 2020; 26: 4506-4520.
|
| [48] |
Shen Z, Xie G, Zhang Y, Yu B, Shao K, Gao G, et al. Similar assembly mechanisms but distinct co-occurrence patterns of free-living vs. particle-attached bacterial communities across different habitats and seasons in shallow, eutrophic Lake Taihu. Environ Pollut. 2022; 314: 120305.
|
| [49] |
Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020; 14: 202-216.
|
| [50] |
Wan X, Gao Q, Zhao J, Feng J, van Nostrand JD, Yang Y, et al. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol Biochem. 2020; 142: 107696.
|
| [51] |
Wang Y, Ye F, Wu S, Wu J, Yan J, Xu K, et al. Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River: roles of abundant and rare taxa. Sci Total Environ. 2020; 747: 141335.
|
| [52] |
Tu Q, Yan Q, Deng Y, Michaletz ST, Buzzard V, Weiser MD, et al. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol Biochem. 2020; 148: 107897.
|
| [53] |
Zhang C, Liu Q, Li X, Wang M, Liu X, Yang J, et al. Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean. Sci Total Environ. 2021; 759: 143799.
|
| [54] |
Wang B, Liu N, Yang M, Wang L, Liang X, Liu CQ. Co-occurrence of planktonic bacteria and archaea affects their biogeographic patterns in China's coastal wetlands. Environ Microbiome. 2021; 16: 19.
|
| [55] |
Ji L, Shen F, Liu Y, Yang Y, Wang J, Purahong W, et al. Contrasting altitudinal patterns and co-occurrence networks of soil bacterial and fungal communities along soil depths in the cold-temperate montane forests of China. Catena. 2022; 209: 105844.
|
| [56] |
Zhang S, Xia X, Wang J, Li X, Xin Y, Bao J, et al. Biogeographic patterns and elevational differentiation of sedimentary bacterial communities across river systems in China. Appl Environ Microbiol. 2022; 88: e00597-22.
|
| [57] |
Ul-Hasan S, Bowers RM, Figueroa-Montiel A, LiceaNavarro AF, Beman JM, Woyke T, et al. Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS One. 2019; 14: e0212355.
|
| [58] |
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Environmental heterogeneity mediated prokaryotic community variations in marine sediments. Ecohydrol Hydrobiol. 2022; 22: 627-639.
|
| [59] |
Wang Y, Chen X, Guo W, Zhou H. Distinct bacterial and archaeal diversities and spatial distributions in surface sediments of the Arctic Ocean. FEMS Microbiol Lett. 2018; 365: fny273.
|
| [60] |
De Wit R, Bouvier T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol. 2006; 8: 755-758.
|
| [61] |
Malard LA, Pearce DA. Microbial diversity and biogeography in Arctic soils. Environ Microbiol Rep. 2018; 10: 611-625.
|
| [62] |
Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011; 5: 1571-1579.
|
| [63] |
Rath KM, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol Biochem. 2015; 81: 108-123.
|
| [64] |
Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol. 2011; 13: 1908-1923.
|
| [65] |
Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018; 16: 263-276.
|
| [66] |
Peng X, Fawcett SE, van Oostende N, Wolf MJ, Marconi D, Sigman DM, et al. Nitrogen uptake and nitrification in the subarctic North Atlantic Ocean. Limnol Oceanogr. 2018; 63: 1462-1487.
|
| [67] |
Morono Y, Terada T, Nishizawa M, Ito M, Hillion F, Takahata N, et al. Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA. 2011; 108: 18295-18300.
|
| [68] |
Smith WO, Barber D. Polynyas: windows to the world. Amsterdam: Elsevier; 2007.
|
| [69] |
Arrigo KR. Sea ice ecosystems. Ann Rev Mar Sci. 2014; 6: 439-467.
|
| [70] |
Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol. 2007; 18: 257-266.
|
| [71] |
Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. Low-temperature extremophiles and their applications. Curr Opin Biotechnol. 2002; 13: 253-261.
|
| [72] |
Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001; 409: 507-510.
|
| [73] |
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005; 102: 14683-14688.
|
| [74] |
Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012; 109: 17633-17638.
|
| [75] |
Nekola JC, White PS. The distance decay of similarity in biogeography and ecology. J Biogeography. 1999; 26: 867-878.
|
| [76] |
Liu S, Chen Q, Li J, Li Y, Zhong S, Hu J, et al. Different spatiotemporal dynamics, ecological drivers and assembly processes of bacterial, archaeal and fungal communities in brackish-saline groundwater. Water Res. 2022; 214: 118193.
|
| [77] |
Gao G-F, Peng D, Wu D, Zhang Y, Chu H. Increasing inundation frequencies enhance the stochastic process and network complexity of the soil archaeal community in coastal wetlands. Appl Environ Microbiol. 2021; 87: e02560-20.
|
| [78] |
Karlin S, Brocchieri L, Trent J, Blaisdell BE, Mrázek J. Heterogeneity of genome and proteome content in bacteria, archaea, and eukaryotes. Theor Popul Biol. 2002; 61: 367-390.
|
| [79] |
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000; 405: 299-304.
|
| [80] |
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005; 3: 711-721.
|
| [81] |
Pikuta EV, Hoover RB, Tang J. Microbial extremophiles at the limits of life. Crit Rev Microbiol. 2007; 33: 183-209.
|
| [82] |
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol. 2019; 10: 780.
|
| [83] |
Taylor JW, Berbee ML. Dating divergences in the fungal tree of life: review and new analyses. Mycologia. 2017; 98: 838-849.
|
| [84] |
Peay KG, Kennedy PG, Bruns TD. Fungal community ecology: a hybrid beast with a molecular master. Bioscience. 2008; 58: 799-810.
|
| [85] |
Kasuga T, White TJ, Taylor JW. Estimation of nucleotide substitution rates in eurotiomycete fungi. Mol Biol Evol. 2002; 19: 2318-2324.
|
| [86] |
Spietz RL, Lundeen RA, Zhao X, Nicastro D, Ingalls AE, Morris RM. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ Microbiol. 2019; 21: 2391-2401.
|
| [87] |
Baltar F, Martínez-Pérez C, Amano C, Vial M, Robaina-Estévez S, Reinthaler T, et al. A ubiquitous gammaproteobacterial clade dominates expression of sulfur oxidation genes across the mesopelagic ocean. Nat Microbiol. 2023; 8: 1137-1148.
|
| [88] |
Zhong H, Sun H, Liu R, Zhan Y, Huang X, Ju F, et al. Comparative genomic analysis of Labrenzia aggregata (Alphaproteobacteria) strains isolated from the Mariana Trench: insights into the metabolic potentials and biogeochemical functions. Front Microbiol. 2021; 12: 770370.
|
| [89] |
Auguet J-C, Triadó-Margarit X, Nomokonova N, Camarero L, Casamayor EO. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J. 2012; 6: 1786-1797.
|
| [90] |
Yakimov MM, Cono VL, Smedile F, DeLuca TH, Juárez S, Ciordia S, et al. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J. 2011; 5: 945-961.
|
| [91] |
Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol. 2005; 7: 1985-1995.
|
| [92] |
Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury J B, Stahl D A., et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005; 437: 543-546.
|
| [93] |
Mori JF, Chen L-X, Jessen GL, Rudderham SB, McBeth JM, Lindsay MBJ, et al. Putative mixotrophic nitrifying-denitrifying gammaproteobacteria implicated in nitrogen cycling within the Ammonia/Oxygen transition zone of an oil sands pit lake. Front Microbiol. 2019; 10: 2435.
|
| [94] |
Wei Y, Zhang SH. Abiostress resistance and cellulose degradation abilities of haloalkaliphilic fungi: applications for saline-alkaline remediation. Extremophiles. 2017; 22: 155-164.
|
| [95] |
Aitken RA, Eddy BP, Ingram M, Weurman C. The action of culture filtrates of the fungus Myrothecium verrucaria on β-glucosans. Biochem J. 1956; 64: 63-70.
|
| [96] |
Kassim EA. Effect of Myrothecium sp. cellulase on different types of cellulose and cellulosic materials. Folia Microbiol. 1983; 28: 36-40.
|
| [97] |
Updegraff DM. Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotechnol Bioeng. 1971; 13: 77-97.
|
| [98] |
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012; 8: e1002606.
|
| [99] |
Kitano H. Biological robustness. Nat Rev Genet. 2004; 5: 826-837.
|
| [100] |
Liu S, Yu H, Yu Y, Huang J, Zhou Z, Zeng J, et al. Ecological stability of microbial communities in Lake Donghu regulated by keystone taxa. Ecological Indicators. 2022; 136: 108695.
|
| [101] |
Rose SA, Robicheau BM, Tolman J, Fonseca-Batista D, Rowland E, Desai D, et al. Nitrogen fixation in the widely distributed marine γ-proteobacterial diazotroph Candidatus Thalassolituus haligoni. Sci Adv. 2024; 10: eadn1476.
|
| [102] |
Zhang D, Yu H, Yang Y, Liu F, Li M, Huang J, et al. Ecological interactions and the underlying mechanism of anammox and denitrification across the anammox enrichment with eutrophic lake sediments. Microbiome. 2023; 11: 82.
|
| [103] |
Sun J, Zhou W, Zhang L, Cheng H, Wang Y, Tang R, et al. Bioleaching of copper-containing electroplating sludge. J Environ Manage. 2021; 285: 112133.
|
| [104] |
Xu S, He C, Song S, Li C. Spatiotemporal dynamics of marine microbial communities following a Phaeocystis bloom: biogeography and co-occurrence patterns. Environ Microbiol Rep. 2021; 13: 294-308.
|
| [105] |
Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC. Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol. 2009; 11: 971-980.
|
| [106] |
Ziganshina EE, Mohammed WS, Shagimardanova EI, Vankov PY, Gogoleva NE, Ziganshin AM. Fungal, bacterial, and archaeal diversity in the digestive tract of several beetle larvae (Coleoptera). BioMed Res Int. 2018; 2018: 6765438.
|
| [107] |
Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol. 2017; 26: 6170-6182.
|
| [108] |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012; 41: D590-D596.
|
| [109] |
Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 2018; 12: 2198-2210.
|
| [110] |
Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, et al. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environ Microbiol. 2021; 23: 484-498.
|
| [111] |
Dufrêne M, Legendre P. Species assemblages and indicator Species: the need for a flexible asymmetrical approach. Ecol Monograph. 1997; 67: 345-366.
|
| [112] |
Benjamini Y, Hochberg Y. Controlling the false discovery rate a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 57: 289-300.
|
| [113] |
Zhang Y, Yao P, Sun C, Li S, Shi X, Zhang X-H, et al. Vertical diversity and association pattern of total, abundant and rare microbial communities in deep-sea sediments. Mol Ecol. 2021; 30: 2800-2816.
|
RIGHTS & PERMISSIONS
2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.