Cpx-mediated amino acid sensing diversifies gastrointestinal colonization of Klebsiella pneumoniae

Danyang Li , Qiucheng Shi , Liuqing He , Jianhua Luo , Huajie Zhu , Xiaoting Hua , Yunsong Yu , Yan Jiang , Liang Tao

mLife ›› 2025, Vol. 4 ›› Issue (2) : 181 -192.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (2) : 181 -192. DOI: 10.1002/mlf2.70005
ORIGINAL RESEARCH

Cpx-mediated amino acid sensing diversifies gastrointestinal colonization of Klebsiella pneumoniae

Author information +
History +
PDF

Abstract

Klebsiella pneumoniae is a Gram-negative opportunistic pathogenic bacterium that occasionally inhabits the human gastrointestinal tracts. Gut-colonized K. pneumoniae may then metastasize to other organs and tissues, thus causing severe infections. In this study, we identified three cpxA mutations in K. pneumoniae that experimentally evolved to show reduced adhesive ability. CpxA is a sensor histidine kinase that rendered reduced surface adhesion and gut colonization ability in K. pneumoniae. Interestingly, one experimentally gained CpxA mutant (L168del) also commonly occurs in nature. K. pneumoniae containing CpxA variants showed different colonization potentials through altered type 3 fimbriae expression. Lastly, we demonstrated that CpxA contributes to amino acid sensing, thus regulating the colonization of K. pneumoniae both on solid surfaces and in mouse intestines. The polymorphism of CpxA may help to broaden the environmental adaptation of the bacterium. These findings together reveal a Cpx-mediated regulation to diversify intestinal colonization in K. pneumoniae.

Keywords

amino acid sensing / CpxRA / intestinal colonization / Klebsiella pneumoniae / type 3 fimbriae

Cite this article

Download citation ▾
Danyang Li, Qiucheng Shi, Liuqing He, Jianhua Luo, Huajie Zhu, Xiaoting Hua, Yunsong Yu, Yan Jiang, Liang Tao. Cpx-mediated amino acid sensing diversifies gastrointestinal colonization of Klebsiella pneumoniae. mLife, 2025, 4(2): 181-192 DOI:10.1002/mlf2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong N, Yang X, Chan EWC, Zhang R, Chen S. Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022; 79: 103998.

[2]

Wu H, Li D, Zhou H, Sun Y, Guo l, Shen D. Bacteremia and other body site infection caused by hypervirulent and classic Klebsiella pneumoniae. Microb Pathog. 2017; 104: 254-262.

[3]

Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018; 8: 4.

[4]

Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020; 18: 344-359.

[5]

Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol. 2024; 22: 598-616.

[6]

Dorman MJ, Short FL. Klebsiella pneumoniae: when a colonizer turns bad. Nat Rev Microbiol. 2017; 15: 384.

[7]

Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 2014; 9: 1071-1081.

[8]

Chung DR, Lee SS, Lee HR, Kim HB, Choi HJ, Eom JS, et al. Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infect. 2007; 54: 578-583.

[9]

Yang C-C, Yen C-H, Ho M-W, Wang J-H. Comparison of pyogenic liver abscess caused by non-Klebsiella pneumoniae and Klebsiella pneumoniae. J Microbiol Immunol Infect. 2004; 37: 176-184.

[10]

Gorrie CL, Mirčeta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis. 2017; 65: 208-215.

[11]

Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019; 32: e00001-19.

[12]

Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016; 80: 629-661.

[13]

Chen Q, Wang M, Han M, Xu L, Zhang H. Molecular basis of Klebsiella pneumoniae colonization in host. Microb Pathog. 2023; 177: 106026.

[14]

Joseph L, Merciecca T, Forestier C, Balestrino D, Miquel S. From Klebsiella pneumoniae colonization to dissemination: an overview of studies implementing murine models. Microorganisms. 2021; 9: 1282.

[15]

Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere. 2016; 1: e00261-16.

[16]

Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005; 43: 4178-4182.

[17]

Young TM, Bray AS, Nagpal RK, Caudell DL, Yadav H, Zafar MA. Animal model to study Klebsiella pneumoniae gastrointestinal colonization and host-to-host transmission. Infect Immun. 2020; 88: e00071-20.

[18]

Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evolut. 2012; 27: 547-560.

[19]

Revitt-Mills SA, Robinson A. Antibiotic-induced mutagenesis: under the microscope. Front Microbiol. 2020; 11: 585175.

[20]

Raivio TL, Silhavy TJ. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol. 1997; 179: 7724-7733.

[21]

Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett. 1999; 178: 169-175.

[22]

Jubelin G, Vianney A, Beloin C, Ghigo J-M, Lazzaroni J-C, Lejeune P, et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol. 2005; 187: 2038-2049.

[23]

Kuo CH, Lin WF, Liu CJ, Wang ZC, Liu TY, Peng HL. Role of the stress-responsive two-component system CpxAR in regulating fimbriae expression in Klebsiella pneumoniae CG43. J Microbiol Immunol Infect. 2023; 56: 464-476.

[24]

Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog. 2011; 7: e1002204.

[25]

Mechaly AE, Sassoon N, Betton JM, Alzari PM. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol. 2014; 12: e1001776.

[26]

Yamamoto K, Ishihama A. Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem. 2006; 70: 1688-1695.

[27]

Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol. 2005; 187: 2038-2049.

[28]

DiGiuseppe PA, Silhavy TJ. Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol. 2003; 185: 2432-2440.

[29]

Raivio TL, Popkin DL, Silhavy TJ. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol. 1999; 181: 5263-5272.

[30]

Tschauner K, Hörnschemeyer P, Müller VS, Hunke S. Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in E. coli. PLoS One. 2014; 9: e107383.

[31]

Kumar A, Russell RM, Pifer R, Menezes-Garcia Z, Cuesta S, Narayanan S, et al. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe. 2020; 28: 41-53.

[32]

Bröer S. Intestinal amino acid transport and metabolic health. Annu Rev Nutr. 2023; 43: 73-99.

[33]

Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020; 19: 1.

[34]

Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA. 2015; 112: E3574-E3581.

[35]

Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998; 11: 589-603.

[36]

Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta Mol Cell Res. 2014; 1843: 1529-1541.

[37]

McEwen J, Silverman P. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc Natl Acad Sci USA. 1980; 77: 513-517.

[38]

Vogt SL, Raivio TL. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett. 2012; 326: 2-11.

[39]

Hunke S, Keller R, Müller VS. Signal integration by the Cpx-envelope stress system. FEMS Microbiol Lett. 2012; 326: 12-22.

[40]

Kumar A, Russell RM, Pifer R, Menezes-Garcia Z, Cuesta S, Narayanan S, et al. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe. 2020; 28: 41-53.e8.

[41]

Chu WH, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, et al. Acquisition of regulator on virulence plasmid of hypervirulent Klebsiella allows bacterial lifestyle switch in response to iron. mBio. 2023; 14: e01297-23.

[42]

Lin C-T, Lin T-H, Wu C-C, Wan L, Huang C-F, Peng H-L. CRP-cyclic AMP regulates the expression of type 3 fimbriae via cyclic di-GMP in Klebsiella pneumoniae. PLoS One. 2016; 11: e0162884.

[43]

Wu C-C, Lin C-T, Cheng W-Y, Huang C-J, Wang Z-C, Peng H-L. Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43. Microbiology. 2012; 158: 1045-1056.

[44]

Thanassi DG, Nuccio S-P, Shu Kin So S, Bäumler AJ. Fimbriae: classification and biochemistry. EcoSal Plus. 2007; 2: ecosalplus.2.4.2.1.

[45]

Struve C, Bojer M, Krogfelt KA. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun. 2009; 77: 5016-5024.

[46]

Zhou H, Liu W, Qin T, Liu C, Ren H. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Klebsiella pneumoniae. Front Microbiol. 2017; 8: 371.

[47]

Huang T-W, Lam I, Chang H-Y, Tsai S-F, Palsson BO, Charusanti P. Capsule deletion via a λ-Red knockout system perturbs biofilm formation and fimbriae expression in Klebsiella pneumoniae MGH 78578. BMC Res Notes. 2014; 7: 13.

[48]

Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, et al. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018; 84: e01834-18.

[49]

Luo J, Yang Q, Zhang X, Zhang Y, Wan L, Zhan X, et al. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell. 2022; 185: 980-994.e15.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/