The GntR/VanR transcription regulator AlkR represses AlkB2 monooxygenase expression and regulates n-alkane degradation in Pseudomonas aeruginosa SJTD-1

Wanli Peng , Xiuli Wang , Qinchen Liu , Zhihong Xiao , Fulin Li , Nannan Ji , Zhuo Chen , Jiaying He , Junhao Wang , Zixin Deng , Shuangjun Lin , Rubing Liang

mLife ›› 2025, Vol. 4 ›› Issue (2) : 126 -142.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (2) : 126 -142. DOI: 10.1002/mlf2.70004
ORIGINAL RESEARCH

The GntR/VanR transcription regulator AlkR represses AlkB2 monooxygenase expression and regulates n-alkane degradation in Pseudomonas aeruginosa SJTD-1

Author information +
History +
PDF

Abstract

Transmembrane alkane monooxygenase (AlkB)-type monooxygenases, especially AlkB2 monooxygenases, are crucial for aerobic degradation of the medium-to-long-chain n-alkanes in hydrocarbon-utilizing microorganisms. In this study, we identified a GntR/VanR transcription regulator AlkR of Pseudomonas aeruginosa SJTD-1 involved in the negative regulation of AlkB2 and deciphered its nature of DNA binding and ligand release. The deletion of alkR enhanced the transcription levels of the alkB2 gene and the utilization efficiency of the medium-to-long-chain n-alkanes by strain SJTD-1. The dimer of AlkR recognizes and binds to a conserved palindromic motif in the promoter of the alkB2 gene, and structural symmetry is vital for DNA binding and transcription repression. The long-chain fatty acyl coenzyme A compounds can release AlkR and stimulate transcription of alkB2, reflecting the effect of alkane catabolic metabolites. Structural insights unveiled that the arginine residues and scaffold residues of AlkR are critical for DNA binding. Further bioinformatics analysis of AlkR revealed the widespread VanR–AlkB couples distributed in Pseudomonadaceae with high conservation in the sequences of functional genes and intergenic regions, highlighting a conserved regulatory pattern for n-alkane utilization across this family. These findings demonstrate the regulatory mechanism and structural basis of GntR/VanR transcription regulators in modulating n-alkane biodegradation and provide valuable insights in improving the bioremediation efficiency of hydrocarbon pollution.

Keywords

AlkB2 monooxygenase / AlkR transcription regulator / regulatory mechanism / structure features / VanR–AlkB couples

Cite this article

Download citation ▾
Wanli Peng, Xiuli Wang, Qinchen Liu, Zhihong Xiao, Fulin Li, Nannan Ji, Zhuo Chen, Jiaying He, Junhao Wang, Zixin Deng, Shuangjun Lin, Rubing Liang. The GntR/VanR transcription regulator AlkR represses AlkB2 monooxygenase expression and regulates n-alkane degradation in Pseudomonas aeruginosa SJTD-1. mLife, 2025, 4(2): 126-142 DOI:10.1002/mlf2.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gaur VK, Gautam K, Sharma P, Gupta P, Dwivedi S, Srivastava JK, et al. Sustainable strategies for combating hydrocarbon pollution: special emphasis on mobil oil bioremediation. Sci Total Environ. 2022; 832: 155083.

[2]

Wu B, Guo S, Wang J. Spatial ecological risk assessment for contaminated soil in oiled fields. J Hazard Mater. 2021; 403: 123984.

[3]

Ugochukwu UC, Chukwuone NA, Jidere C, Agu C, Kurumeh L, Ezeudu OB. Legacy PAHs in effluent receiving river sediments near a large petroleum products depot in Enugu, Nigeria: human health risks and economic cost of pollution. Environ Pollut. 2022; 309: 119731.

[4]

Yang Y, Zhang ZW, Liu RX, Ju HY, Bian XK, Zhang WZ, et al. Research progress in bioremediation of petroleum pollution. Environ Sci Pollut Res. 2021; 28: 46877-46893.

[5]

Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017; 223: 277-286.

[6]

Head IM, Jones DM, Röling WFM. Marine microorganisms make a meal of oil. Nat Rev Microbiol. 2006; 4: 173-182.

[7]

Rojo F. Degradation of alkanes by bacteria. Environ Microbiol. 2009; 11: 2477-2490.

[8]

Liu H, Liang R, Tao F, Ma C, Liu Y, Liu X, et al. Genome sequence of Pseudomonas aeruginosa strain SJTD-1, a bacterium capable of degrading long-chain alkanes and crude oil. J Bacteriol. 2012; 194: 4783-4784.

[9]

Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. Differential protein expression during growth on medium versus long-chain alkanes in the obligate marine Hydrocarbon-Degrading bacterium Thalassolituus oleivorans MIL-1. Front Microbiol. 2018; 9: 3130.

[10]

Kang YS, Jung J, Jeon CO, Park W. Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol. 2011; 49: 29-34.

[11]

Zampolli J, Collina E, Lasagni M, Di Gennaro P. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express. 2014; 4: 73.

[12]

Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA. 2007; 104: 5602-5607.

[13]

Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003; 67: 503-549.

[14]

Naeem U, Qazi MA. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ Sci Pollut Res. 2020; 27: 27370-27382.

[15]

Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem Rev. 2017; 117: 8574-8621.

[16]

Smits THM, Balada SB, Witholt B, van Beilen JB. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol. 2002; 184: 1733-1742.

[17]

Karthikeyan S, Hatt JK, Kim M, Spain JC, Huettel M, Kostka JE, et al. A novel, divergent alkane monooxygenase (alkB) clade involved in crude oil biodegradation. Environ Microbiol Rep. 2021; 13: 830-840.

[18]

van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol. 2007; 74: 13-21.

[19]

van Beilen JB, Marín MM, Smits THM, Röthlisberger M, Franchini AG, Witholt B, et al. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol. 2004; 6: 264-273.

[20]

Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, et al. Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep. 2014; 4: 4968.

[21]

Liu H, Xu J, Liang R, Liu J. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One. 2014; 9: e105506.

[22]

Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, et al. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun. 2023; 14: 2180.

[23]

Wu RR, Dang Z, Yi XY, Yang C, Lu GN, Guo CL, et al. The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3. J Hazard Mater. 2011; 186: 978-983.

[24]

van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol. 2006; 72: 59-65.

[25]

Wang W, Shao Z. Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol. 2012; 80: 523-533.

[26]

Shanklin J, Whittle E. Evidence linking the Pseudomonas oleovorans alkane ω-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett. 2003; 545: 188-192.

[27]

Nie Y, Liang JL, Fang H, Tang YQ, Wu XL. Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its “team role” with alkW1 in alkane degradation. Appl Microbiol Biotechnol. 2014; 98: 163-173.

[28]

Wang W, Wang L, Shao Z. Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol. 2010; 60: 429-439.

[29]

Liu H, Sun WB, Liang RB, Huang L, Hou JL, Liu JH. iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: a global response to n-octadecane induced stress. J Proteomics. 2015; 123: 14-28.

[30]

Kong W, Zhao C, Gao X, Wang L, Tian Q, Liu Y, et al. Characterization and transcriptome analysis of a long-chain n-alkane-degrading strain Acinetobacter pittii SW-1. Int J Environ Res Public Health. 2021; 18: 6365.

[31]

Kumar S, Zhou J, Li M, Xiang H, Zhao D. Insights into the metabolism pathway and functional genes of long-chain aliphatic alkane degradation in haloarchaea. Extremophiles. 2020; 24: 475-483.

[32]

Wang W, Shao Z. The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat Commun. 2014; 5: 5755.

[33]

Liang JL, Nie Y, Wang M, Xiong G, Wang YP, Maser E, et al. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Mol Microbiol. 2016; 99: 338-359.

[34]

Liang JL, JiangYang JH, Nie Y, Wu XL. Regulation of the alkane hydroxylase CYP153 gene in a Gram-positive alkane-degrading bacterium, Dietzia sp. strain DQ12-45-1b. Appl Environ Microbiol. 2016; 82: 608-619.

[35]

Ratajczak A, Geißdörfer W, Hillen W. Expression of alkane hydroxylase from Acinetobacter sp. Strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol. 1998; 180: 5822-5827.

[36]

Ji N, Wang X, Yin C, Peng W, Liang R. CrgA protein represses AlkB2 monooxygenase and regulates the degradation of medium-to-long-chain n-alkanes in Pseudomonas aeruginosa SJTD-1. Front Microbiol. 2019; 10: 400.

[37]

Zhou X, Xing X, Hou J, Liu J. Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane. PLoS One. 2017; 12: e0179842.

[38]

Hoskisson PA, Rigali S. Chapter 1: variation in form and function the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol. 2009; 69: 1-22.

[39]

Suvorova IA, Korostelev YD, Gelfand MS. GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One. 2015; 10: e0132618.

[40]

Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem. 2002; 277: 12507-12515.

[41]

DiRusso CC, Heimert TL, Metzger AK. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem. 1992; 267: 8685-8691.

[42]

Cronan JE. The Escherichia coli FadR transcription factor: too much of a good thing? Mol Microbiol. 2021; 115: 1080-1085.

[43]

van Aalten DMF. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J. 2001; 20: 2041-2050.

[44]

Henry M. A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell. 1992; 70: 671-679.

[45]

Shi W, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ. The 40-residue insertion in Vibrio cholerae FadR facilitates binding of an additional fatty acyl-CoA ligand. Nat Commun. 2015; 6: 6032.

[46]

Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, et al. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res. 2020; 48: 5967-5985.

[47]

Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, et al MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Res. 2018; 46: 9338-9352.

[48]

Vigouroux A, Meyer T, Naretto A, Legrand P, Aumont-Nicaise M, Di Cicco A, et al. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. Nucleic Acids Res. 2021; 49: 529-546.

[49]

Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. The role of DNA shape in protein-DNA recognition. Nature. 2009; 461: 1248-1253.

[50]

Santra S, Jana M. Influence of aqueous Arginine solution on regulating conformational stability and hydration properties of the secondary structural segments of a protein at elevated temperatures: a molecular dynamics study. J Phys Chem B. 2022; 126: 1462-1476.

[51]

Chintakayala K, Sellars LE, Singh SS, Shahapure R, Westerlaken I, Meyer AS, et al. DNA recognition by Escherichia coli CbpA protein requires a conserved arginine-minor-groove interaction. Nucleic Acids Res. 2015; 43: 2282-2292.

[52]

Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: structure and metabolisms. Chemosphere. 2022; 286: 131752.

[53]

Wang A, Fu W, Feng Y, Liu Z, Song D. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. J Hazard Mater. 2022; 429: 128396.

[54]

Juteau P, Rho D, Larocque R, LeDuy A. Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol. 1999; 52: 863-868.

[55]

Mitter EK, Germida JJ, de Freitas JR. Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Sci Rep. 2021; 11: 10856.

[56]

Chaı̂neau CH, Morel J, Dupont J, Bury E, Oudot J. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ. 1999; 227: 237-247.

[57]

Révész F, Figueroa-Gonzalez PA, Probst AJ, Kriszt B, Banerjee S, Szoboszlay S, et al. Microaerobic conditions caused the overwhelming dominance of Acinetobacter spp. and the marginalization of Rhodococcus spp. in diesel fuel/crude oil mixture-amended enrichment cultures. Arch Microbiol. 2019; 202: 329-342.

[58]

Fenibo EO, Selvarajan R, Abia ALK, Matambo T. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. Sci Total Environ. 2023; 877: 162951.

[59]

Schneiker S, dos Santos VAM, Bartels D, Bekel T, Brecht M, Buhrmester J, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol. 2006; 24: 997-1004.

[60]

Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, et al. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol. 2004; 54: 141-148.

[61]

Yang Q, Feng Q, Zhang B, Gao J, Sheng Z, Xue Q, et al. Marinobacter alexandrii sp. nov., a novel yellow-pigmented and algae growth-promoting bacterium isolated from marine phycosphere microbiota. Antonie Van Leeuwenhoek. 2021; 114: 709-718.

[62]

Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 1998; 212: 77-86.

[63]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods. 2001; 25: 402-408.

[64]

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024; 630: 493-500.

[65]

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021; 61: 3891-3898.

[66]

Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42: W320-W324.

[67]

Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015; 43: W39-W49.

[68]

Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021; 38: 3022-3027.

[69]

Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023; 51: W587-W592.

[70]

Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol. 1997; 276: 307-326.

[71]

Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystal. 2007; 40: 658-674.

[72]

Brünger AT. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature. 1992; 355: 472-475.

[73]

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D. 2010; 66: 486-501

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/