Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria

Yongqi Mu , Yuqin Song , Xueru Tian , Zixuan Ding , Shigang Yao , Yi Li , Chao Wang , Dawei Wei , Waldemar Vollmer , Gang Zhang , Jie Feng

mLife ›› 2025, Vol. 4 ›› Issue (2) : 143 -154.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (2) : 143 -154. DOI: 10.1002/mlf2.70003
ORIGINAL RESEARCH

Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria

Author information +
History +
PDF

Abstract

The escalating antibiotic resistance crisis poses a major global health threat. Bacteriophage therapy offers a promising alternative for combating multidrug-resistant infections. However, bacterial resistance to phages remains a significant hurdle. Innovative strategies are needed to overcome this challenge. In this study, we developed a phage cocktail based on our phage library, consisting of three phages that suppressed phage resistance of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp). This cocktail capitalized on dual instances of collateral sensitivity, thereby constraining the evolution of phage resistance. The first-layered collateral sensitivity arose from overlapping coverage between capsular polysaccharide (CPS) and lipopolysaccharide (LPS), rendering the bacteria resistant to CPS-binding phages but more susceptible to LPS-binding phages. The second-layered collateral sensitivity resulted from an O serotype switch (from O1 to O2), causing resistance to O1 antigen-binding phages but increasing susceptibility to phages that target the O2 antigen. This dual-layered collateral sensitivity phage cocktail effectively mitigated infection caused by CR-hvKp in mice. Our research highlights the importance of the collateral sensitivity mechanism in counteracting the evolution of phage resistance and offers a sophisticated strategy for configuring phage cocktails to eliminate bacterial resistance.

Keywords

antibiotic resistance / bacteriophage (phage) cocktails / collateral sensitivity / evolution / Klebsiella pneumoniae

Cite this article

Download citation ▾
Yongqi Mu, Yuqin Song, Xueru Tian, Zixuan Ding, Shigang Yao, Yi Li, Chao Wang, Dawei Wei, Waldemar Vollmer, Gang Zhang, Jie Feng. Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria. mLife, 2025, 4(2): 143-154 DOI:10.1002/mlf2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic Era. Clin Microbiol Rev. 2019; 32: e00066-18.

[2]

Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020; 18: 125-138.

[3]

Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. Phage therapy: from biological mechanisms to future directions. Cell. 2023; 186: 17-31.

[4]

Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 2022; 73: 197-211.

[5]

Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016; 363: fnw002.

[6]

Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010; 8: 317-327.

[7]

Hesse S, Rajaure M, Wall E, Johnson J, Bliskovsky V, Gottesman S, et al. Phage resistance in multidrug-resistant Klebsiella pneumoniae ST258 evolves via diverse mutations that culminate in impaired adsorption. mBio. 2020; 11: e02530-19.

[8]

Gao D, Ji H, Wang L, Li X, Hu D, Zhao J, et al. Fitness trade-offs in phage cocktail-resistant Salmonella enterica serovar enteritidis results in increased antibiotic susceptibility and reduced virulence. Microbiol Spectr. 2022; 10: e0291422.

[9]

Imamovic L, Ellabaan MMH, Dantas Machado AM, Citterio L, Wulff T, Molin S, et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell. 2018; 172: 121-134.e14.

[10]

Liu DY, Phillips L, Wilson DM, Fulton KM, Twine SM, Wong A, et al. Collateral sensitivity profiling in drug-resistant Escherichia coli identifies natural products suppressing cephalosporin resistance. Nat Commun. 2023; 14: 1976.

[11]

Li Q, Chen S, Zhu K, Huang X, Huang Y, Shen Z, et al. Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium. Nat Commun. 2022; 13: 1888.

[12]

Efferth T, Saeed MEM, Kadioglu O, Seo EJ, Shirooie S, Mbaveng AT, et al. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotech Adv. 2020; 38: 107342.

[13]

Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B, et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell. 2016; 165: 234-246.

[14]

Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019; 32: e00001-19.

[15]

Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom. 2016; 2: e000073.

[16]

Tang N, Hu J, Zhao Y, Song Y, Wang C, Zhang G, et al. In vivo evolution of carbapenem resistance in hypervirulent Klebsiella pneumoniae in a patient undergoing long-term treatment. J Antimicrob Chemother. 2022; 77: 531-533.

[17]

Liu L, Lou N, Liang Q, Xiao W, Teng G, Ma J, et al. Chasing the landscape for intrahospital transmission and evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Sci Bull. 2023; 68: 3027-3047.

[18]

Yang J, Li Y, Tang N, Li J, Zhou J, Lu S, et al. The human gut serves as a reservoir of hypervirulent Klebsiella pneumoniae. Gut Microbes. 2022; 14: 2114739.

[19]

Gorrie CL, Mirčeta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis. 2017; 65: 208-215.

[20]

Calderon-Gonzalez R, Lee A, Lopez-Campos G, Hancock SJ, Sa-Pessoa J, Dumigan A, et al. Modelling the gastrointestinal carriage of Klebsiella pneumoniae infections. mBio. 2023; 14: e0312122.

[21]

Federici S, Kredo-Russo S, Valdés-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 2022; 185: 2879-2898.e24.

[22]

Hesse S, Malachowa N, Porter AR, Freedman B, Kobayashi SD, Gardner DJ, et al. Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258. mBio. 2021; 12: e00034-21.

[23]

He J, Shi Q, Chen Z, Zhang W, Lan P, Xu Q, et al. Opposite evolution of pathogenicity driven by in vivo wzc and wcaJ mutations in ST11-KL64 carbapenem-resistant Klebsiella pneumoniae. Drug Resist Updates. 2023; 66: 100891.

[24]

Patel KB, Toh E, Fernandez XB, Hanuszkiewicz A, Hardy GG, Brun YV, et al. Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus. J Bacteriol. 2012; 194: 2646-2657.

[25]

Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, et al. Biosynthesis pathway of ADP-l-glycero-β-d-manno-heptose in Escherichia coli. J Bacteriol. 2002; 184: 363-369.

[26]

Holmes CL, Smith SN, Gurczynski SJ, Severin GB, Unverdorben LV, Vornhagen J, et al. The ADP-heptose biosynthesis enzyme GmhB is a conserved gram-negative bacteremia fitness factor. Infect Immun. 2022; 90: e0022422.

[27]

Chiu SF, Teng KW, Wang PC, Chung HY, Wang CJ, Cheng HC, et al. Helicobacter pylori GmhB enzyme involved in ADP-heptose biosynthesis pathway is essential for lipopolysaccharide biosynthesis and bacterial virulence. Virulence. 2021; 12: 1610-1628.

[28]

Kelly SD, Clarke BR, Ovchinnikova OG, Sweeney RP, Williamson ML, Lowary TL, et al. Klebsiella pneumoniae O1 and O2ac antigens provide prototypes for an unusual strategy for polysaccharide antigen diversification. J Biol Chem. 2019; 294: 10863-10876.

[29]

Clarke BR, Ovchinnikova OG, Kelly SD, Williamson ML, Butler JE, Liu B, et al. Molecular basis for the structural diversity in serogroup O2-antigen polysaccharides in Klebsiella pneumoniae. J Biol Chem. 2018; 293: 4666-4679.

[30]

Hsieh PF, Wu MC, Yang FL, Chen CT, Lou TC, Chen YY, et al. D-galactan II is an immunodominant antigen in O1 lipopolysaccharide and affects virulence in Klebsiella pneumoniae: implication in vaccine design. Front Microbiol. 2014; 5: 608.

[31]

Hernando-Amado S, Laborda P, Martínez JL. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat Commun. 2023; 14: 1723.

[32]

Imamovic L, Sommer MOA. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med. 2013; 5: 204ra132.

[33]

Pál C, Papp B, Lázár V. Collateral sensitivity of antibiotic-resistant microbes. TIM. 2015; 23: 401-407.

[34]

Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol. 2021; 23: 7723-7740.

[35]

Acton L, Pye HV, Thilliez G, Kolenda R, Matthews M, Turner AK, et al. Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. J Virol. 2024; 98: e0147623.

[36]

Kelly SD, Ovchinnikova OG, Müller F, Steffen M, Braun M, Sweeney RP, et al. Identification of a second glycoform of the clinically prevalent O1 antigen from Klebsiella pneumoniae. Proc Natl Acad Sci USA. 2023; 120: e2301302120.

[37]

Hao G, Shu R, Ding L, Chen X, Miao Y, Wu J, et al. Bacteriophage SRD2021 recognizing capsular polysaccharide shows therapeutic potential in serotype K47 Klebsiella pneumoniae infections. Antibiotics. 2021; 10: 894.

[38]

Liu JY, Lin TL, Chiu CY, Hsieh PF, Lin YT, Lai LY, et al. Decolonization of carbapenem-resistant Klebsiella pneumoniae from the intestinal microbiota of model mice by phages targeting two surface structures. Front Microbiol. 2022; 13: 877074.

[39]

Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol. 2021; 19: e3001424.

[40]

Wang C, Wang S, Jing S, Zeng Y, Yang L, Mu Y, et al. Data-driven engineering of phages with tunable capsule tropism for Klebsiella pneumoniae. Adv Sci (Weinh). 2024; 11: e2309972.

[41]

Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol. 2009; 501: 69-76.

[42]

Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020; 70: e102.

[43]

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30: 2068-2069.

[44]

Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021; 18: 366-368.

[45]

Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, et al. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun. 2021; 12: 6965.

[46]

Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019; 35: 526-528.

[47]

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015; 31: 3691-3693.

[48]

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30: 1312-1313.

[49]

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019; 37: 540-546.

[50]

Hu J, Fan J, Sun Z, Liu S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics. 2020; 36: 2253-2255.

[51]

Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010; 5: e11147.

[52]

Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, et al. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018; 84: e01834-18.

[53]

Gan L, Feng Y, Du B, Fu H, Tian Z, Xue G, et al. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae. Nat Commun. 2023; 14: 3215.

[54]

Chen H, Liu H, Gong Y, Dunstan RA, Ma Z, Zhou C, et al. Klebsiella-phage cocktail to broaden the host range and delay bacteriophage resistance both in vitro and in vivo. NPJ Biofilms Microbiomes. 2024; 10: 127.

[55]

Gencay YE, Jasinskytė D, Robert C, Semsey S, Martínez V, Petersen , et al. Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nat Biotechnol. 2024; 42: 265-274.

[56]

Van Kregten E, Westerdaal NA, Willers JM. New, simple medium for selective recovery of Klebsiella pneumoniae and Klebsiella oxytoca from human feces. J Clin Microbiol. 1984; 20: 936-941.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/