Engineering archaeal membrane-spanning lipid GDGT biosynthesis in bacteria: Implications for early life membrane transformations

Huahui Chen , Fengfeng Zheng , Xi Feng , Zijing Huang , Wei Yang , Chuanlun Zhang , Wenbin Du , Kira S. Makarova , Eugene V. Koonin , Zhirui Zeng

mLife ›› 2025, Vol. 4 ›› Issue (2) : 193 -204.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (2) : 193 -204. DOI: 10.1002/mlf2.70001
ORIGINAL RESEARCH

Engineering archaeal membrane-spanning lipid GDGT biosynthesis in bacteria: Implications for early life membrane transformations

Author information +
History +
PDF

Abstract

Eukaryotes are hypothesized to be archaeal–bacterial chimeras. Given the different chemical structures of membrane phospholipids in archaea and bacteria, transformations of membranes during eukaryogenesis that led to the bacterial-type membranes of eukaryotic cells remain a major conundrum. One of the possible intermediates of eukaryogenesis could involve an archaeal–bacterial hybrid membrane. So far, organisms with hybrid membranes have not been discovered, and experimentation on such membranes has been limited. To generate mixed membranes, we reconstructed the archaeal membrane lipid biosynthesis pathway in Escherichia coli, creating three strains that individually produced archaeal lipids ranging from simple, such as DGGGOH (digeranylgeranylglycerol) and archaeol, to complex, such as GDGT (glycerol dialkyl glycerol tetraether). The physiological responses became more pronounced as the hybrid membrane incorporated more complex archaeal membrane lipids. In particular, biosynthesis of GDGT induced a pronounced SOS response, accompanied by cellular filamentation, explosive cell lysis, and ATP accumulation. Thus, bacteria seem to be able to incorporate simple archaeal membrane lipids, such as DGGGOH and archaeol, without major fitness costs, compatible with the involvement of hybrid membranes at the early stages of cell evolution and in eukaryogenesis. By contrast, the acquisition of more complex, structurally diverse membrane lipids, such as GDGT, appears to be strongly deleterious to bacteria, suggesting that this type of lipid is an archaeal innovation.

Keywords

archaeal lipid GDGT / cellular filamentation / eukaryogenesis / hybrid membrane / SOS response

Cite this article

Download citation ▾
Huahui Chen, Fengfeng Zheng, Xi Feng, Zijing Huang, Wei Yang, Chuanlun Zhang, Wenbin Du, Kira S. Makarova, Eugene V. Koonin, Zhirui Zeng. Engineering archaeal membrane-spanning lipid GDGT biosynthesis in bacteria: Implications for early life membrane transformations. mLife, 2025, 4(2): 193-204 DOI:10.1002/mlf2.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koga Y, Morii H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev. 2007; 71: 97-120.

[2]

Kates M. Diether and tetraether phospholipids and glycolipids as molecular markers for Archaebacteria (Archaea). In: Biology, Environmental Science, Chemistry. Amsterdam: Elsevier Science; 1997. Vol. 671, p. 35-48.

[3]

De Rosa M, Gambacorta A, Nicolaus B. A new type of cell membrane, in thermophilic archaebacteria, based on bipolar ether lipids. J Memb Sci. 1983; 16: 287-294.

[4]

Koga Y. Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea. 2012; 2012: e789652.

[5]

Lai D, Springstead JR, Monbouquette HG. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles. 2008; 12: 271-278.

[6]

Feyhl-Buska J, Chen Y, Jia C, Wang JX, Zhang CL, Boyd ES. Influence of growth phase, ph, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Front Microbiol. 2016; 7: 1323.

[7]

Yang W, Chen H, Chen Y, Chen A, Feng X, Zhao B, et al. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress. Environ Microbiol. 2023; 25: 575-587.

[8]

Liman GLS, Garcia AA, Fluke KA, Anderson HR, Davidson SC, Welander PV, et al. Tetraether archaeal lipids promote long-term survival in extreme conditions. Mol Microbiol. 2024; 121: 882-894.

[9]

Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU, Overmann J, et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol. 2011; 77: 4147-4154.

[10]

Halamka TA, McFarlin JM, Younkin AD, Depoy J, Dildar N, Kopf SH. Oxygen limitation can trigger the production of branched GDGTs in culture. Geochem Persp Lett. 2021; 19: 36-39.

[11]

Chen Y, Zheng F, Yang H, Yang W, Wu R, Liu X, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies. Geochim Cosmochim Acta. 2022; 337: 155-165.

[12]

Halamka TA, Raberg JH, McFarlin JM, Younkin AD, Mulligan C, Liu XL, et al. Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis. Geobiology. 2023; 21: 102-118.

[13]

Koga Y, Kyuragi T, Nishihara M, Sone N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol. 1998; 46: 54-63.

[14]

Wächtershäuser G. From pre-cells to eukarya—a tale of two lipids. Mol Microbiol. 2003; 47: 13-22.

[15]

Peretó J, López-García P, Moreira D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 2004; 29: 469-477.

[16]

Payandeh J, Fujihashi M, Gillon W, Pai EF. The crystal structure of (S)-3-O-Geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme. J Biol Chem. 2006; 281: 6070-6078.

[17]

Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct. 2008; 3: 29.

[18]

Koga Y. Early evolution of membrane lipids: how did the lipid divide occur? J Mol Evol. 2011; 72: 274-282.

[19]

Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019; 4: 1138-1148.

[20]

López-García P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evolut. 2015; 30: 697-708.

[21]

Lombard J, López-García P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol. 2012; 10: 507-515.

[22]

Tobiasson V, Luo J, Wolf YI, Koonin EV. Dominant contribution of Asgard archaea to eukaryogenesis. bioRxiv. 2024. https://doi.org/10.1101/2024.10.14.618318

[23]

Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol. 2023; 8: 1008-1017.

[24]

López-García P, Moreira D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol. 2020; 5: 655-667.

[25]

Moreira D, López-García P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol. 1998; 47: 517-530.

[26]

Lai D, Lluncor B, Schröder I, Gunsalus RP, Liao JC, Monbouquette HG. Reconstruction of the archaeal isoprenoid ether lipid biosynthesis pathway in Escherichia coli through digeranylgeranylglyceryl phosphate. Metab Eng. 2009; 11: 184-191.

[27]

Yokoi T, Isobe K, Yoshimura T, Hemmi H. Archaeal phospholipid biosynthetic pathway reconstructed in Escherichia coli. Archaea. 2012; 2012: 1-9.

[28]

Isobe K, Ogawa T, Hirose K, Yokoi T, Yoshimura T, Hemmi H. Geranylgeranyl reductase and ferredoxin from Methanosarcina acetivorans are required for the synthesis of fully reduced archaeal membrane lipid in Escherichia coli cells. J Bacteriol. 2014; 196: 417-423.

[29]

Caforio A, Siliakus MF, Exterkate M, Jain S, Jumde VR, Andringa RLH, et al. Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane. Proc Natl Acad Sci USA. 2018; 115: 3704-3709.

[30]

Hoekzema M, Jiang J, Driessen AJM. Optimizing archaeal lipid biosynthesis in Escherichia coli. ACS Synth Biol. 2024; 13: 2470-2479.

[31]

Zhang J, Li T, Hong Z, Ma C, Fang X, Zheng F, et al. Biosynthesis of hybrid neutral lipids with archaeal and eukaryotic characteristics in engineered Saccharomyces cerevisiae. Angew Chem Int Ed. 2023; 62: e202214344.

[32]

Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature. 2020; 577: 519-525.

[33]

Zeng Z, Chen H, Yang H, Chen Y, Yang W, Feng X, et al. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. Nat Commun. 2022; 13: 1545.

[34]

Lloyd CT, Iwig DF, Wang B, Cossu M, Metcalf WW, Boal AK, et al. Discovery, structure and mechanism of a tetraether lipid synthase. Nature. 2022; 609: 197-203.

[35]

Zeng Z, Liu XL, Wei JH, Summons RE, Welander PV. Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius. Proc Natl Acad Sci USA. 2018; 115: 12932-12937.

[36]

Zeng Z, Liu XL, Farley KR, Wei JH, Metcalf WW, Summons RE, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. Proc Natl Acad Sci USA. 2019; 116: 22505-22511.

[37]

Caforio A, Jain S, Fodran P, Siliakus M, Minnaard AJ, van der Oost J, et al. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli. Biochem J. 2015; 470: 343-355.

[38]

Sasaki D, Fujihashi M, Iwata Y, Murakami M, Yoshimura T, Hemmi H, et al. Structure and mutation analysis of archaeal geranylgeranyl reductase. J Mol Biol. 2011; 409: 543-557.

[39]

Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS. Identification and microbial production of a terpene-based advanced biofuel. Nat Commun. 2011; 2: 483.

[40]

Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng. 2015; 119: 165-171.

[41]

Lanz ND, Blaszczyk AJ, McCarthy EL, Wang B, Wang RX, Jones BS, et al. Enhanced solubilization of class B radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli. Biochemistry. 2018; 57: 1475-1490.

[42]

Zheng L, Cash VL, Flint DH, Dean DR. Assembly of iron-sulfur clusters. J Biol Chem. 1998; 273: 13264-13272.

[43]

Daughtry KD, Xiao Y, Stoner-Ma D, Cho E, Orville AM, Liu P, et al. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase. J Am Chem Soc. 2012; 134: 2823-2834.

[44]

Bak DW, Weerapana E. Monitoring Fe-S cluster occupancy across the E. coli proteome using chemoproteomics. Nat Chem Biol. 2023; 19: 356-366.

[45]

Jain S, Caforio A, Fodran P, Lolkema JS, Minnaard AJ, Driessen AJM. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. Chem Biol. 2014; 21: 1392-1401.

[46]

Moore DA, Whatley ZN, Joshi CP, Osawa M, Erickson HP. Probing for binding regions of the FtsZ protein surface through site-directed insertions: discovery of fully functional FtsZ-fluorescent proteins. J Bacteriol. 2017; 199: e00553-16.

[47]

Ma X, Ehrhardt DW, Margolin W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci USA. 1996; 93: 12998-13003.

[48]

Bos J, Zhang Q, Vyawahare S, Rogers E, Rosenberg SM, Austin RH. Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc Natl Acad Sci USA. 2015; 112: 178-183.

[49]

Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev. 2014; 38: 1126-1145.

[50]

Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, et al. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol. 2005; 187: 7655-7666.

[51]

Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harbor Perspect Biol. 2013; 5: a012674.

[52]

Butala M, Žgur-Bertok D, Busby SJW. The bacterial LexA transcriptional repressor. Cell Mol Life Sci. 2009; 66: 82-93.

[53]

Mizusawa S, Gottesman S. Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci USA. 1983; 80: 358-362.

[54]

Mukherjee A, Lutkenhaus J. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J Bacteriol. 1999; 181: 823-832.

[55]

Huisman O, D'Ari R. An inducible DNA replication-cell division coupling mechanism in E. coli. Nature. 1981; 290: 797-799.

[56]

Barbé J, Villaverde A, Guerrero R. Evolution of cellular ATP concentration after UV-mediated induction of SOS system in Escherichia coli. Biochem Biophys Res Commun. 1983; 117: 556-561.

[57]

Eme L, Tamarit D, Caceres EF, Stairs CW, De AndaAnda, V, et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature. 2023; 618: 992-999.

[58]

Liu Y, Makarova KS, Huang WC, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature. 2021; 593: 553-557.

[59]

Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. Environ Mol Mutagen. 2019; 60: 368-384.

[60]

Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. SOS response induction by ß-lactams and bacterial defense against antibiotic lethality. Science. 2004; 305: 1629-1631.

[61]

Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130: 797-810.

[62]

Molina-Quiroz RC, Silva-Valenzuela C, Brewster J, Castro-Nallar E, Levy SB, Camilli A. Cyclic AMP regulates bacterial persistence through repression of the oxidative stress response and SOS-dependent DNA repair in uropathogenic Escherichia coli. mBio. 2018; 9: e02144-17.

[63]

Léger L, Budin-Verneuil A, Cacaci M, Benachour A, Hartke A, Verneuil N. β-lactam exposure triggers reactive oxygen species formation in Enterococcus faecalis via the respiratory chain component DMK. Cell Rep. 2019; 29: 2184-2191.e3.

[64]

Wong F, Stokes JM, Bening SC, Vidoudez C, Trauger SA, Collins JJ. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol Cell. 2022; 82: 3499-3512.e10.

[65]

Elferink MGL, De Wit JG, Driessen AJM, Konings WN. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta Biomembr. 1994; 1193: 247-254.

[66]

Choquet CG, Patel GB, Sprott GD, Beveridge TJ. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol. 1994; 42: 375-384.

[67]

Komatsu H, Chong PLG. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry. 1998; 37: 107-115.

[68]

Mathai JC, Sprott GD, Zeidel ML. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem. 2001; 276: 27266-27271.

[69]

Nagle JF, Scott HL. Lateral compressibility of lipid mono- and bilayers. theory of membrane permeability. Biochim Biophys Acta Biomembr. 1978; 513: 236-243.

[70]

Shinoda W, Shinoda K, Baba T, Mikami M. Molecular dynamics study of bipolar tetraether lipid membranes. Biophys J. 2005; 89: 3195-3202.

[71]

Chong PLG. Physical properties of membranes composed of tetraether archaeal lipids. In: Robb F, Antranikian G, Grogan D, Driessen A, editors. Thermophiles. Boca Raton, FL, USA: CRC Press; 2007. p. 73-95.

[72]

Kim YH, Leriche G, Diraviyam K, Koyanagi T, Gao K, Onofrei D, et al. Entropic effects enable life at extreme temperatures. Sci Adv. 2019; 5: eaaw4783.

[73]

Tao L, Pattenaude SA, Joshi S, Begley TP, Rauchfuss TB, Britt RD. Radical SAM enzyme HydE generates adenosylated Fe(I) intermediates en route to the [FeFe]-hydrogenase catalytic H-cluster. J Am Chem Soc. 2020; 142: 10841-10848.

[74]

Amann E, Ochs B, Abel KJ. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 1988; 69: 301-315.

[75]

Banta AB, Wei JH, Gill CCC, Giner JL, Welander PV. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase. Proc Natl Acad Sci USA. 2017; 114: 245-250.

[76]

Ducas-Mowchun K, De Silva PM, Crisostomo L, Fernando DM, Chao TC, Pelka P, et al. Next generation of Tn7-based single-copy insertion elements for use in multi- and pan-drug-resistant strains of Acinetobacter baumannii. Appl Environ Microbiol. 2019; 85: e00066-19.

[77]

Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988; 16: 6127-6145.

[78]

Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem. 2006; 37: 1036-1041.

[79]

Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs KU. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom. 2004; 18: 617-628.

[80]

Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, et al. A lipidome Atlas in MS-DIAL 4. Nat Biotechnol. 2020; 38: 1159-1163.

[81]

Yao W, Zhang W, He W, Xiao W, Chen Y, Zhu Y, et al. Lipidomic chemotaxonomy aligned with phylogeny of Halobacteria. Front Microbiol. 2023; 14: 1297600.

[82]

Dong X, Awak MA, Tomlinson N, Tang Y, Sun YP, Yang L. Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One. 2017; 12: e0185324.

[83]

Diao Z, Kan L, Zhao Y, Yang H, Song J, Wang C, et al. Artificial intelligence-assisted automatic and index-based microbial single-cell sorting system for One-Cell-One-Tube. mlife. 2022; 1: 448-459.

[84]

Xu T, Li Y, Han X, Kan L, Ren J, Sun L, et al. Versatile, facile and low-cost single-cell isolation, culture and sequencing by optical tweezer-assisted pool-screening. Lab Chip. 2022; 23: 125-135.

[85]

Xie B, Wang J, Nie Y, Tian J, Wang Z, Chen D, et al. Type IV pili trigger episymbiotic association of Saccharibacteria with its bacterial host. Proc Natl Acad Sci USA. 2022; 119: e2215990119.

[86]

Zhou K, Zhou L, Lim QE, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011; 12: 18.

[87]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001; 25: 402-408.

[88]

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010; 11: 119.

[89]

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25: 3389-3402.

[90]

Makarova KS, Wolf YI, Koonin EV. Towards functional characterization of archaeal genomic dark matter. Biochem Soc Trans. 2019; 47: 389-398.

[91]

Makarova, K, Wolf, Y & Koonin, E Archaeal Clusters of Orthologous Genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life. 2015; 5: 818-840.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/