Identification of novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A

Pengju Wu , Mengqi Zhang , Yanlu Kou , Shikuan Liang , Jinfeng Ni , Qihong Huang , Yulong Shen

mLife ›› 2025, Vol. 4 ›› Issue (1) : 17 -28.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (1) : 17 -28. DOI: 10.1002/mlf2.12163
ORIGINAL RESEARCH

Identification of novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A

Author information +
History +
PDF

Abstract

In Sulfolobales cells, transcription of the Ups (UV-inducible pili of Sulfolobus) and Ced (Crenarchaeal system for exchange of DNA) genes is highly induced by DNA damage, and the two systems play key roles in pili-mediated cell aggregation and chromosomal DNA import, respectively. Ups is composed of UpsA, UpsB, UpsE, and UpsF, while Ced is composed of CedA, CedA1, CedA2, and CedB. So far, how DNA is transported by these systems is far from clear. Here, we report three novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A, CedD (SiRe_1715) and CedE (SiRe_2100), paralogs of CedB and CedA, and UpsC (SiRe_1957), a paralog of UpsA/UpsB. We developed a DNA import and export assay method, by which we revealed that CedD, CedE, and UpsC are essential for DNA import, while CedE and UpsC are also involved in DNA export together with CedA1 and Ups. Microscopic analysis revealed that upsC is involved in cell aggregation like other Ups genes. In addition, we found that cedB and cedD co-occur in the Crenarchaeal genomes that lack virB4, an essential component of type IV secretion system. Interestingly, CedB and CedD share homology to different parts of VirB4 N-terminal domain and form stable homo-oligomers in vitro. Collectively, our results indicate that CedD, CedE, and UpsC are integral components of the Ced and Ups systems in Sulfolobales.

Keywords

Crenarchaea / Ced / chromosomal DNA exchange / DNA damage response / Ups

Cite this article

Download citation ▾
Pengju Wu,Mengqi Zhang,Yanlu Kou,Shikuan Liang,Jinfeng Ni,Qihong Huang,Yulong Shen. Identification of novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A. mLife, 2025, 4(1): 17-28 DOI:10.1002/mlf2.12163

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, et al. Mechanisms of gene flow in archaea. Nat Rev Microbiol. 2017; 15:492–501.

[2]

Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F, Forterre P, et al. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. ISME J. 2021; 15:2892–2905.

[3]

Gaudin M, Gauliard E, Schouten S, Houel-Renault L, Lenormand P, Marguet E, et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Environ Microbiol Rep. 2013; 5:109–116.

[4]

Mevarech M, Werczberger R. Genetic transfer in Halobacterium volcanii. J Bacteriol. 1985; 162:461–462.

[5]

Grogan DW. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J Bacteriol. 1996; 178:3207–3211.

[6]

Ghané F, Grogan DW. Chromosomal marker exchange in the thermophilic archaeon Sulfolobus acidocaldarius: physiological and cellular aspects. Microbiology. 1998; 144:1649–1657.

[7]

Jacobs KL, Grogan DW. Rates of spontaneous mutation in an archaeon from geothermal environments. J Bacteriol. 1997; 179:3298–3303.

[8]

Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJM, et al. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol Microbiol. 2011; 82:807–817.

[9]

Schmidt KJ, Beck KE, Grogan DW. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures. Genetics. 1999; 152:1407–1415.

[10]

van Wolferen M, Wagner A, van der Does C, Albers SV. The archaeal Ced system imports DNA. Proc Natl Acad Sci USA. 2016; 113:2496–2501.

[11]

Beltran LC, Cvirkaite-Krupovic V, Miller J, Wang F, Kreutzberger MAB, Patkowski JB, et al. Archaeal DNA-import apparatus is homologous to bacterial conjugation machinery. Nat Commun. 2023; 14:666.

[12]

Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems. Curr Top Microbiol Immunol. 2018; 418:233–260.

[13]

Macé K, Vadakkepat AK, Redzej A, Lukoyanova N, Oomen C, Braun N, et al. Cryo-EM structure of a type IV secretion system. Nature. 2022; 607:191–196.

[14]

Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol. 2018; 13:1041–1054.

[15]

Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR, et al. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol. 2000; 2:155–164.

[16]

Llosa M, Gomis-Rüth FX, Coll M, Cruz F. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol. 2002; 45:1–8.

[17]

Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep. 2019; 20:e47012.

[18]

Atmakuri K, Cascales E, Christie PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol. 2004; 54:1199–1211.

[19]

Goldlust K, Ducret A, Halte M, Dedieu-Berne A, Erhardt M, Lesterlin C. The F pilus serves as a conduit for the DNA during conjugation between physically distant bacteria. Proc Natl Acad Sci USA. 2023; 120:e2310842120.

[20]

Beltrán L, Torsilieri H, Patkowski JB, Yang JE, Casanova J, Costa TRD, et al. The mating pilus of E. coli pED208 acts as a conduit for ssDNA during horizontal gene transfer. mBio. 2024; 15:e0285723.

[21]

Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol. 2004; 341:961–977.

[22]

Judd PK, Mahli D, Das A. Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. Microbiology. 2005; 151:3483–3492.

[23]

Stingl K, Müller S, Scheidgen-Kleyboldt G, Clausen M, Maier B. Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc Natl Acad Sci USA. 2010; 107:1184–1189.

[24]

Catchpole RJ, Barbe V, Magdelenat G, Marguet E, Terns M, Oberto J, et al. A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea. Nat Microbiol. 2023; 8:1339–1347.

[25]

van Wolferen M, Shajahan A, Heinrich K, Brenzinger S, Black IM, Wagner A, et al. Species-specific recognition of Sulfolobales mediated by UV-Inducible Pili and S-layer glycosylation patterns. mBio. 2020; 11:e03014-19.

[26]

Szabó Z, Sani M, Groeneveld M, Zolghadr B, Schelert J, Albers SV, et al. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol. 2007; 189:4305–4309.

[27]

Henche AL, Ghosh A, Yu X, Jeske T, Egelman E, Albers SV. Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ Microbiol. 2012; 14:3188–3202.

[28]

Zolghadr B, Weber S, Szabó Z, Driessen AJM, Albers SV. Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol. 2007; 64:795–806.

[29]

Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, et al. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol. 2008; 70:938–952.

[30]

van Wolferen M, Ajon M, Driessen AJM, Albers SV. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius. MicrobiologyOpen. 2013; 2:928–937.

[31]

Feng X, Sun M, Han W, Liang YX, She Q. A transcriptional factor B paralog functions as an activator to DNA damage-responsive expression in archaea. Nucleic Acids Res. 2018; 46:7085–7096.

[32]

Schult F, Le TN, Albersmeier A, Rauch B, Blumenkamp P, van der Does C, et al. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response. Nucleic Acids Res. 2018; 46:7179–7192.

[33]

Sun M, Feng X, Liu Z, Han W, Liang YX, She Q. An Orc1/Cdc6 ortholog functions as a key regulator in the DNA damage response in Archaea. Nucleic Acids Res. 2018; 46:6697–6711.

[34]

Fröls S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, Sensen CW, et al. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol. 2007; 189:8708–8718.

[35]

Liu Z, Sun M, Liu J, Liu T, Ye Q, Li Y, et al. A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus. Nucleic Acids Res. 2020; 48:9681–9693.

[36]

Iyer LM, Makarova KS, Koonin EV, Aravind L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 2004; 32:5260–5279.

[37]

Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014; 12:181–196.

[38]

Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev. 2015; 39:81–95.

[39]

Schleper C, Holz I, Janekovic D, Murphy J, Zillig W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol. 1995; 177:4417–4426.

[40]

Aly KA, Baron C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology. 2007; 153:3766–3775.

[41]

Backert S, Fronzes R, Waksman G. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? TIM. 2008; 16:409–413.

[42]

Albers SV, Meyer BH. The archaeal cell envelope. Nat Rev Microbiol. 2011; 9:414–426.

[43]

Hu B, Khara P, Christie PJ. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc Natil Acad Sci USA. 2019; 116:14222–14227.

[44]

Khara P, Song L, Christie PJ, Hu B. In situ visualization of the pKM101-encoded type IV secretion system reveals a highly symmetric ATPase energy center. mBio. 2021; 12:e0246521.

[45]

Wang F, Cvirkaite-Krupovic V, Krupovic M, Egelman EH. Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms. Proc Natl Acad Sci USA. 2022; 119:e2207037119.

[46]

Weaver SJ, Ortega DR, Sazinsky MH, Dalia TN, Dalia AB, Jensen GJ. CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae. Nat Commun. 2020; 11:5080.

[47]

Mom J, Chouikha I, Valette O, Pieulle L, Pelicic V. Systematic functional analysis of the com pilus in Streptococcus sanguinis: a minimalistic type 4 filament dedicated to DNA uptake in monoderm bacteria. mBio. 2024; 15:e0266723.

[48]

Blesa A, César CE, Averhoff B, Berenguer J. Noncanonical cell-to-cell DNA transfer in Thermus spp. is insensitive to argonaute-mediated interference. J Bacteriol. 2015; 197:138–146.

[49]

Blesa A, Baquedano I, Quintáns NG, Mata CP, Castón JR, Berenguer J. The transjugation machinery of Thermus thermophilus: identification of TdtA, an ATPase involved in DNA donation. PLoS Genet. 2017; 13:e1006669.

[50]

Blesa A, Quintans N, Baquedano I, Mata C, Castón J, Berenguer J. Role of archaeal HerA protein in the biology of the bacterium Thermus thermophilus. Genes. 2017; 8:130.

[51]

van Wolferen M, Ma X, Albers SV. DNA processing proteins involved in the UV-induced stress response of Sulfolobales. J Bacteriol. 2015; 197:2941–2951.

[52]

Huang Q, Lin Z, Wu P, Ni J, Shen Y. Phosphoproteomic analysis reveals Rio1-related protein phosphorylation changes in response to UV irradiation in Sulfolobus islandicus REY15A. Front Microbiol. 2020; 11:586025.

[53]

Li Y, Pan S, Zhang Y, Ren M, Feng M, Peng N, et al. Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 2016; 44:e34.

[54]

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008; 25:1307–1320.

[55]

Barrio-Hernandez I, Yeo J, Jänes J, Mirdita M, Gilchrist CLM, Wein T, et al. Clustering predicted structures at the scale of the known protein universe. Nature. 2023; 622:637–645.

[56]

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022; 19:679–682.

[57]

van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, et al. Fast and accurate protein structure search with Foldseek. Nature Biotechnol. 2023; 42:243–246.

[58]

Yang Y, Liu J, Fu X, Zhou F, Zhang S, Zhang X, et al. A novel RHH family transcription factor aCcr1 and its viral homologs dictate cell cycle progression in archaea. Nucleic Acids Res. 2023; 51:1707–1723.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/