Photosynthesis by nonphotosynthetic microorganisms via semiconductor photocatalysis

Bo Wang , Liang Shi , Anhuai Lu

mLife ›› 2024, Vol. 3 ›› Issue (4) : 532 -536.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (4) : 532 -536. DOI: 10.1002/mlf2.12156
OPINION

Photosynthesis by nonphotosynthetic microorganisms via semiconductor photocatalysis

Author information +
History +
PDF

Cite this article

Download citation ▾
Bo Wang, Liang Shi, Anhuai Lu. Photosynthesis by nonphotosynthetic microorganisms via semiconductor photocatalysis. mLife, 2024, 3(4): 532-536 DOI:10.1002/mlf2.12156

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larkum AWD, Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol 2010;21:271–276.

[2]

Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science. 2016;354:857–861.

[3]

Tachibana Y, Vayssieres L, Durrant JR, Artificial photosynthesis for solar water-splitting. Nat Photonics 2012;6:511–518.

[4]

Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science. 2011;332:805–809.

[5]

Liu ZH, Wang K, Chen Y, Tan TW, Nielsen J, Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis. 2020;3:274–288.

[6]

Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 2016;116:7159–7329.

[7]

Liu M, Pang Y., Zhang B, De Luna P, Voznyy O, Xu J, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016;537:382–386.

[8]

Xiao K, Liang J, Wang X, Hou T, Ren X, Yin P, et al. Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy Environ Sci 2022;15:529–549.

[9]

Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 2016;14:651–662.

[10]

Lu A, Li Y, Ding H, Xu X, Li Y, Ren G, et al. Photoelectric conversion on earth’s surface via widespread Fe-and Mn-mineral coatings. Proc Natl Acad Sci USA. 2019;116:9741–9746.

[11]

Lu A, Li Y, Jin S, Wang X, Wu XL, Zeng C, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 2012;3:768.

[12]

Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, et al. A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. Natl Sci Rev 2022;9.

[13]

Zhirnov VV, Rasic D. Semiconductor synthetic biology roadmap. Semiconductor Research Corporation. 2018.

[14]

Cestellos-Blanco S, Zhang H, Kim JM, Shen Y., Yang PD, Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat Catalysis. 2020;3:245–255.

[15]

Claassens NJ, Sousa DZ, Dos Santos VA., de Vos WM, van der Oost J, Harnessing the power of microbial autotrophy. Nat Rev Microbiol 2016;14:692–706.

[16]

Nichols EM, Gallagher JJ, Liu C, Su Y, Resasco J, Yu Y, et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci USA. 2015;112:11461–11466.

[17]

Sakimoto KK, Wong AB, Yang P, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016;351:74–77.

[18]

Yu W, Zeng Y, Wang Z, Xia S, Yang Z, Chen W, et al. Solar-powered multi-organism symbiont mimic system for beyond natural synthesis of polypeptides from CO2 and N2. Sci Adv 2023;9:eadf6772.

[19]

Liu G, Zhong Y, Liu Z, Wang G, Gao F, Zhang C, et al. Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system. Nat Commun 2024;15:2636.

[20]

Pi SS, Yang WJ, Feng W, Yang RJ, Chao WX, Cheng WB, et al. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids. Nat Sustainability. 2023;6:1673–1684.

[21]

Guo J, Suástegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, et al. Light-driven fine chemical production in yeast biohybrids. Science 2018;362:813–816.

[22]

Liu P, Chang Y, Ren X, Liu T, Meng H, Ru X, et al. Endowing cells with unnatural photocatalytic ability for sustainable chemicals production by bionic minerals-triggering. Green Chem 2023;25:431–438.

[23]

Li J, Shen J, Hou T, Tang H, Zeng C, Xiao K, et al. A self-assembled MOF-Escherichia coli hybrid system for light-driven fuels and valuable chemicals synthesis. Adv Sci. 2024;11:e2308597.

[24]

Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 2019;179:1255–1263.

[25]

Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, et al. Revisiting solar energy flow in nanomaterial-microorganism hybrid systems. Chem Rev 2024;124:9081–9112.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/