A new type of ArsR transcriptional repressor controls transcription of the arsenic resistance operon of Arsenicibacter rosenii SM-1

Yujie Zhang , Wenjun Wu , Ke Huang , Fang-Jie Zhao

mLife ›› 2025, Vol. 4 ›› Issue (1) : 96 -100.

PDF
mLife ›› 2025, Vol. 4 ›› Issue (1) : 96 -100. DOI: 10.1002/mlf2.12155
CORRESPONDENCE

A new type of ArsR transcriptional repressor controls transcription of the arsenic resistance operon of Arsenicibacter rosenii SM-1

Author information +
History +
PDF

Cite this article

Download citation ▾
Yujie Zhang, Wenjun Wu, Ke Huang, Fang-Jie Zhao. A new type of ArsR transcriptional repressor controls transcription of the arsenic resistance operon of Arsenicibacter rosenii SM-1. mLife, 2025, 4(1): 96-100 DOI:10.1002/mlf2.12155

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tsai SL, Singh S, Chen W. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol. 2009; 20:659–667.

[2]

Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP. Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci. 2014; 42:443–467.

[3]

Messens J, Silver S. Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol. 2006; 362:1–17.

[4]

Rosen BP, Tamás MJ. Arsenic transport in prokaryotes and eukaryotic microbes. Adv Exp Med Biol. 2010; 679:47–55.

[5]

Rahman MA, Hassler C. Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol. 2014; 146:212–219.

[6]

Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA. 2006; 103:2075–2080.

[7]

Huang K, Xu Y, Packianathan C, Gao F, Chen C, Zhang J, et al. Arsenic methylation by a novel ArsM As(III) S-adenosylmethionine methyltransferase that requires only two conserved cysteine residues. Mol Microbiol. 2018; 107:265–276.

[8]

Chen J, Yoshinaga M, Rosen BP. The antibiotic action of methylarsenite is an emergent property of microbial communities. Mol Microbiol. 2019; 111:487–494.

[9]

Huang K, Liu W, Zhao FJ. Methylarsenite is a broad-spectrum antibiotic disrupting cell wall biosynthesis and cell membrane potential. Environ Microbiol. 2023; 25:562–574.

[10]

Huang K, Liu W, Li Y, Zeng S, Zhao FJ. Glutathione is involved in the reduction of methylarsenate to generate antibiotic methylarsenite in Enterobacter sp. strain CZ-1. Appl Environ Microbiol. 2022; 88:e0246721.

[11]

Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, et al. Reduction of organoarsenical herbicides and antimicrobial growth promoters by the legume symbiont Sinorhizobium meliloti. Environ Sci Technol. 2019; 53:13648–13656.

[12]

Yoshinaga M, Cai Y, Rosen BP. Demethylation of methylarsonic acid by a microbial community. Environ Microbiol. 2011; 13:1205–1215.

[13]

Zhang J, Chen J, Wu YF, Liu X, Packianathan C, Nadar VS, et al. Functional characterization of the methylarsenite-inducible arsRM operon from Noviherbaspirillum denitrificans HC18. Environ Microbiol. 2022; 24:772–783.

[14]

Francisco MJDS, Hope CL, Owolabi JB, Tisa LS, Rosen BP. Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res. 1990; 18:619–624.

[15]

Wu J, Rosen BP. Metalloregulated expression of the ars operon. J Biol Chem. 1993; 268:52–58.

[16]

Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, et al. Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J Biol Chem. 2007; 282:34346–34355.

[17]

Ordóñez E, Thiyagarajan S, Cook JD, Stemmler TL, Gil JA, Mateos LM, et al. Evolution of metal(loid) binding sites in transcriptional regulators. J Biol Chem. 2008; 283:25706–25714.

[18]

Chen J, Nadar VS, Rosen BP. A novel MAs(III)-selective ArsR transcriptional repressor. Mol Microbiol. 2017; 106:469–478.

[19]

Huang K, Chen C, Zhang J, Tang Z, Shen Q, Rosen BP, et al. Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol. 2016; 50:6389–6396.

[20]

Rosen MR, Leuthaeuser JB, Parish CA, Fetrow JS. Isofunctional clustering and conformational analysis of the arsenate reductase superfamily reveals nine distinct clusters. Biochemistry. 2020; 59:4262–4284.

RIGHTS & PERMISSIONS

2025 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/