GRAPE-WEB: An automated computational redesign web server for improving protein thermostability

Jinyuan Sun , Wenyu Shi , Zhihui Xing , Guomei Fan , Qinglan Sun , Linhuan Wu , Juncai Ma , Yinglu Cui , Bian Wu

mLife ›› 2024, Vol. 3 ›› Issue (4) : 527 -531.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (4) : 527 -531. DOI: 10.1002/mlf2.12152
CORRESPONDENCE

GRAPE-WEB: An automated computational redesign web server for improving protein thermostability

Author information +
History +
PDF

Cite this article

Download citation ▾
Jinyuan Sun, Wenyu Shi, Zhihui Xing, Guomei Fan, Qinglan Sun, Linhuan Wu, Juncai Ma, Yinglu Cui, Bian Wu. GRAPE-WEB: An automated computational redesign web server for improving protein thermostability. mLife, 2024, 3(4): 527-531 DOI:10.1002/mlf2.12152

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Musil M, Konegger H, Hon J, Bednar D, Damborsky J. Computational design of stable and soluble biocatalysts. ACS Catal. 2018;9:1033–1054.

[2]

Goldenzweig A, Fleishman SJ. Principles of protein stability and their application in computational design. Annu Rev Biochem. 2018;87:105–129.

[3]

Fang S, Wei R, Cui Y, Su L. Advancing AI protein structure prediction and design: from amino acid “bones” to new era of all-atom “flesh”. Green Carbon. 2024;2:209–210.

[4]

Bednar D, Beerens K, Sebestova E, Bendl J, Khare S, Chaloupkova R, et al. FireProt: energy-and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol. 2015;11:e1004556.

[5]

Wijma HJ, Floor RJ, Jekel PA, Baker D, Marrink SJ, Janssen DB. Computationally designed libraries for rapid enzyme stabilization. Protein Eng Des Sel. 2014;27:49–58.

[6]

Mu Q, Cui Y, Tian Y, Hu M, Tao Y, Wu B. Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design. Int J Biiol Macromol. 2019;136:1060–1068.

[7]

Cui Y, Chen Y, Liu X, Dong S, Tian Y, Qiao Y, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 2021;11:1340–1350.

[8]

Delgado J, Radusky LG, Cianferoni D, Serrano L. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics. 2019;35:4168–4169.

[9]

Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, et al. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13:3031–3048.

[10]

Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, et al. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat Commun. 2014;5:5330.

[11]

Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A. ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res. 2004;32:120D–121D.

[12]

Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics. 2009;25:2537–2543.

[13]

Parthiban V, Gromiha MM, Schomburg D. CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res. 2006;34:W239–W242.

[14]

Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Prot Sci. 2002;11:2714–2726.

[15]

Yin S, Ding F, Dokholyan NV. Eris: an automated estimator of protein stability. Nat Methods. 2007;4:466–467.

[16]

Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:W306–W310.

[17]

Zhu T, Sun J, Pang H, Wu B. Computational enzyme redesign enhances tolerance to denaturants for peptide C-terminal amidation. JACS Au. 2024;4:788–797.

[18]

Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023;379:1123–1130.

[19]

Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bazgier V, et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49:W431–W437.

[20]

Sun J, Zhu T, Cui Y, Wu B. Structure-based self-supervised learning enables ultrafast prediction of stability changes upon mutation at the protein universe scale. bioRxiv. 2023. https://www.biorxiv.org/content/10.1101/2023.08.09.552725v1

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/