Bacterial abundance and diversity in 64–74 Ma subseafloor igneous basement from the Louisville Seamount Chain

Jason B. Sylvan , Benjamin J. Tully , Yuki Morono , Jeffrey C. Alt , Sharon L. Grim , Fumio Inagaki , Anthony A. P. Koppers , Katrina J. Edwards

mLife ›› 2024, Vol. 3 ›› Issue (4) : 578 -583.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (4) : 578 -583. DOI: 10.1002/mlf2.12148
CORRESPONDENCE

Bacterial abundance and diversity in 64–74 Ma subseafloor igneous basement from the Louisville Seamount Chain

Author information +
History +
PDF

Cite this article

Download citation ▾
Jason B. Sylvan, Benjamin J. Tully, Yuki Morono, Jeffrey C. Alt, Sharon L. Grim, Fumio Inagaki, Anthony A. P. Koppers, Katrina J. Edwards. Bacterial abundance and diversity in 64–74 Ma subseafloor igneous basement from the Louisville Seamount Chain. mLife, 2024, 3(4): 578-583 DOI:10.1002/mlf2.12148

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wheat CG, McManus J, Mottl MJ, Giambalvo E. Oceanic phosphorus imbalance: magnitude of the mid-ocean ridge flank hydrothermal sink. Geophys Res Lett. 2003;30:1895.

[2]

Heberling C, Lowell RP, Liu L, Fisk MR. Extent of the microbial biosphere in the oceanic crust. Geochem Geophys Geosyst. 2010;11:Q08003.

[3]

Santelli CM, Banerjee N, Bach W, Edwards KJ. Tapping the subsurface ocean crust biosphere: low biomass and drilling-related contamination calls for improved quality controls. Geomicrobiol J. 2010;27:158–169.

[4]

Früh-Green GL, Orcutt BN, Rouméjon S, Lilley MD, Morono Y, Cotterill C, et al. Magmatism, serpentinization and life: insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos. 2018;323:137–155.

[5]

Jungbluth SP, Bowers RM, Lin HT, Cowen JP, Rappé MS. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME J. 2016;10:2033–2047.

[6]

Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–255.

[7]

Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, et al. First investigation of the microbiology of the deepest layer of ocean crust. PLoS One. 2010;5:e15399.

[8]

Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 2018;12:1–16.

[9]

Stein CA, Stein S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res Solid Earth. 1994;99:3081–3095.

[10]

Von Herzen RP. Geothermal evidence for continuing hydrothermal circulation in older (>60 Ma) ocean crust. In: Davis EE, Elderfield H, editors. Hydrogeology of the oceanic lithosphere. Cambridge: Cambridge University Press; 2004. p. 414–450.

[11]

Suzuki Y, Yamashita S, Kouduka M, Ao Y, Mukai H, Mitsunobu S, et al. Deep microbial proliferation at the basalt interface in 33.5-104 million-year-old oceanic crust. Commun Biol. 2020;3:136.

[12]

Fisher AT, Becker K. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature. 2000;403:71–74.

[13]

Harris RN, Fisher AT, Chapman DS. Fluid flow through seamounts and implications for global mass fluxes. Geology. 2004;32:725.

[14]

Expedition 330 Scientific Party. Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspotsIODP Preliminary Report 330. 2011.

[15]

Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. Global multi-resolution topography synthesis. Geochem Geophys Geosyst. 2009;10:Q03014.

[16]

Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–16216.

[17]

Zhang X, Feng X, Wang F. Diversity and metabolic potentials of subsurface crustal microorganisms from the Western Flank of the Mid-Atlantic ridge. Front Microbiol. 2016;7:363.

[18]

Lever MA, Rouxel O, Alt JC, Shimizu N, Ono S, Coggon RM, et al. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science. 2013;339:1305–1308.

[19]

Marteinsson VT, Rúnarsson Á, Stefánsson A, Thorsteinsson T, Jóhannesson T, Magnússon SH, et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J. 2013;7:427–437.

[20]

Jørgensen SL, Zhao R. Microbial inventory of deeply buried oceanic crust from a young ridge flank. Front Microbiol. 2016;7:820.

[21]

Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One. 2007;2:e667.

[22]

Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. In-situ incubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ Microbiol. 2017;19:1322–1337.

[23]

An D, Caffrey SM, Soh J, Agrawal A, Brown D, Budwill K, et al. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol. 2013;47:10708–10717.

[24]

Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. 2016;1:16057.

[25]

Doyle SM, Whitaker EA, De Pascuale, V, Wade TL, Knap AH, Santschi PH, et al. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and the dispersant corexit. Front Microbiol. 2018;9:689.

[26]

Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ϵ-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–468.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/