Phospholipase PlcH is involved in the secretion of cell wall glycoproteins and contributes to the host immune response of Aspergillus fumigatus

Jinbin Hao , Yin Guo , Hui Zhou , Haomiao Ouyang , Jinghua Yang , Wenxia Fang , Cheng Jin

mLife ›› 2024, Vol. 3 ›› Issue (4) : 537 -550.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (4) : 537 -550. DOI: 10.1002/mlf2.12146
ORIGINAL RESEARCH

Phospholipase PlcH is involved in the secretion of cell wall glycoproteins and contributes to the host immune response of Aspergillus fumigatus

Author information +
History +
PDF

Abstract

Glycosylphosphatidylinositol (GPI) anchoring is one of the conserved posttranslational modifications in eukaryotes that attach proteins to the plasma membrane. In fungi, in addition to plasma membrane GPI-anchored proteins (GPI-APs), some GPI-APs are specifically released from the cell membrane, secreted into the cell wall, and covalently linked to cell wall glucans as GPI-anchored cell wall proteins (GPI-CWPs). However, it remains unclear how fungal cells specifically release GPI-CWPs from their membranes. In this study, phospholipase PlcH was identified and confirmed as a phospholipase C that hydrolyzes phosphate ester bonds to release GPI-APs from the membrane of the opportunistic fungal pathogen Aspergillus fumigatus. Deletion of the plcH gene led to abnormal conidiation, polar abnormality, and increased sensitivity to antifungal drugs. In an immunocompromised mouse model, the ΔplcH mutant showed an attenuated inflammatory response and increased macrophage killing compared with the wild type. Biochemical and proteomic analyses revealed that PlcH was involved in the localization of various cell wall GPI-APs and contributed to the cell wall integrity. Our results demonstrate that PlcH can specifically recognize and release GPI-CWPs from the cell membrane, which represents a newly discovered secretory pathway of GPI-CWPs in A. fumigatus.

Keywords

Aspergillus fumigatus / cell wall protein / GPI-anchored protein / immune response / macrophage killing

Cite this article

Download citation ▾
Jinbin Hao, Yin Guo, Hui Zhou, Haomiao Ouyang, Jinghua Yang, Wenxia Fang, Cheng Jin. Phospholipase PlcH is involved in the secretion of cell wall glycoproteins and contributes to the host immune response of Aspergillus fumigatus. mLife, 2024, 3(4): 537-550 DOI:10.1002/mlf2.12146

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park H-S, Yu J-H. Developmental regulators in Aspergillus fumigatus. J Microbiol. 2016;54:223–231.

[2]

Verweij PE, Lestrade PPA, Melchers WJG, Meis JF. Azole resistance surveillance in Aspergillus fumigatus: beneficial or biased? J Antimicrob Chemother. 2016;71:2079–2082.

[3]

Nywening AV, Rybak JM, Rogers PD, Fortwendel JR. Mechanisms of triazole resistance in Aspergillus fumigatus. Environ Microbiol. 2020;22:4934–4952.

[4]

Xu J. Assessing global fungal threats to humans. mLife. 2020;1:223–240.

[5]

Arastehfar A, Carvalho A, van de Veerdonk FL, Jenks JD, Koehler P, Krause R, et al. COVID-19 associated pulmonary Aspergillosis (CAPA)—from immunology to treatment. J Fungi. 2020;6:91.

[6]

Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science. 2015;347:1414–1416.

[7]

Lazzarini C, Esposto MC, Prigitano A, Cogliati M, De Lorenzis G, Tortorano AM. Azole resistance in Aspergillus fumigatus clinical isolates from an Italian culture collection. Antimicrob Agents Chemother. 2016;60:682–685.

[8]

Zhou D, Korfanty GA, Mo M, Wang R, Li X, Li H, et al. Extensive genetic diversity and widespread azole resistance in greenhouse populations of Aspergillus fumigatus in Yunnan, China. mSphere. 2021;6:0006621.

[9]

Geißel B, Loiko V, Klugherz I, Zhu Z, Wagener N, Kurzai O, et al. Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus. Nat Commun. 2018;9:3098.

[10]

Chen Y, Le Mauff F, Wang Y, Lu R, Sheppard DC, Lu L, et al. The transcription factor SomA synchronously regulates biofilm formation and cell wall homeostasis in Aspergillus fumigatus. mBio. 2020;11:0232920.

[11]

Lim J-Y, Kim YJ, Woo SA, Jeong JW, Lee Y-R, Kim C-H, et al. Corrigendum: the LAMMER kinase, LkhA, affects Aspergillus fumigatus pathogenicity by modulating reproduction and biosynthesis of cell wall PAMPs. Front Cell Infect Microbiol. 2022;11:797626.

[12]

Zhou Y, Yan K, Qin Q, Raimi OG, Du C, Wang B, et al. Phosphoglucose isomerase is important for Aspergillus fumigatus cell wall biogenesis. mBio. 2022;13:e0142622.

[13]

Millet N, Moya-Nilges M, Sachse M, Krijnse Locker J, Latgé J-P, Mouyna I. Aspergillus fumigatus exoβ(1-3)glucanases family GH55 are essential for conidial cell wall morphogenesis. Cell Microbiol. 2019;21:e13102.

[14]

Zacharias CA, Sheppard DC. The role of Aspergillus fumigatus polysaccharides in host–pathogen interactions. Curr Opin Microbiol. 2019;52:20–26.

[15]

Liu Z, Valsecchi I, Le Meur RA, Simenel C, Guijarro JI, Comte C, et al. Conidium specific polysaccharides in Aspergillus fumigatus. J Fungi. 2023;9:155.

[16]

Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: the unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life. 2018;70:355–383.

[17]

Müller GA. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch Biochem Biophys. 2018;656:1–18.

[18]

Liu Y-S, Fujita M. Mammalian GPI-anchor modifications and the enzymes involved. Biochem Soc Trans. 2020;48:1129–1138.

[19]

Latgé J-P, Beauvais A, Chamilos G. The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol. 2017;71:99–116.

[20]

Li J, Mouyna I, Henry C, Moyrand F, Malosse C, Chamot-Rooke J, et al. Glycosylphosphatidylinositol anchors from galactomannan and GPI-anchored protein are synthesized by distinct pathways in Aspergillus fumigatus. J Fungi. 2018;4:19.

[21]

Li H, Zhou H, Luo Y, Ouyang H, Hu H, Jin C. Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol. 2007;64:1014–1027.

[22]

Yan J, Du T, Zhao W, Hartmann T, Lu H, Y, et al. Transcriptome and biochemical analysis reveals that suppression of GPI-anchor synthesis leads to autophagy and possible necroptosis in Aspergillus fumigatus. PLoS One. 2013;8:e59013.

[23]

Zhao W, Lu Y, Ouyang H, Zhou H, Yan J, Du T, et al. N-Glycosylation of Gel1 or Gel2 is vital for cell wall β-glucan synthesis in Aspergillus fumigatus. Glycobiology. 2013;23:955–968.

[24]

Zhao W, Li C, Liang J, Sun S. The Aspergillus fumigatus β-1,3-glucanosyltransferase Gel7 plays a compensatory role in maintaining cell wall integrity under stress conditions. Glycobiology. 2014;24:418–427.

[25]

Muszkieta L, Fontaine T, Beau R, Mouyna I, Vogt MS, Trow J, et al. The glycosylphosphatidylinositol-anchored DFG family is essential for the insertion of galactomannan into the β-(1,3)-glucan-chitin core of the cell wall of Aspergillus fumigatus. mSphere. 2019;4:e00397–19.

[26]

Mösch HU, Fink GR. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics. 1997;145:671–684.

[27]

Kitagaki H, Wu H, Shimoi H, Ito K. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol. 2002;46:1011–1022.

[28]

Spreghini E, Davis DA, Subaran R, Kim M, Mitchell AP. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryotic Cell. 2003;2:746–755.

[29]

Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–1156.

[30]

Cocco L, Follo MY, Manzoli L, Suh P-G. Phosphoinositide-specific phospholipase C in health and disease. J Lipid Res. 2015;56:1853–1860.

[31]

Ouyang H, Chen X, Y, Wilson IBH, Tang G, Wang A, et al. One single basic amino acid at the ω-1 or ω-2 site is a signal that retains glycosylphosphatidylinositol-anchored protein in the plasma membrane of Aspergillus fumigatus. Eukaryotic Cell. 2013;12:889–899.

[32]

Ouyang H, Du T, Zhou H, Wilson IBH, Yang J, Latgé J-P, et al. Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth. Sci Rep. 2019;9:5857.

[33]

Ram AFJ, Klis FM. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc. 2006;1:2253–2256.

[34]

Ortiz-Ramírez JA, Cuéllar-Cruz M, López-Romero E. Responses of Sporothrix globosa to the cell wall perturbing agents Congo Red and Calcofluor White. Antonie Van Leeuwenhoek. 2021;114:609–624.

[35]

Vanden Bossche H, Marichal P, Le Jeune L, Coene MC, Gorrens J, Cools W. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob Agents Chemother. 1993;37:2101–2105.

[36]

Heeres J, Meerpoel L, Lewi P. Conazoles. Molecules. 2010;15:4129–4188.

[37]

Crowley PD, Gallagher HC. Clotrimazole as a pharmaceutical: past, present and future. J Appl Microbiol. 2014;117:611–617.

[38]

Dudakova A, Spiess B, Tangwattanachuleeporn M, Sasse C, Buchheidt D, Weig M, et al. Molecular tools for the detection and deduction of Azole antifungal drug resistance phenotypes in Aspergillus species. Clin Microbiol Rev. 2017;30:1065–1091.

[39]

Krishnan-Natesan S. Terbinafine: a pharmacological and clinical review. Expert Opin Pharmacother. 2009;10:2723–2733.

[40]

Appelt L, Nenoff P, Uhrlaß S, Krüger C, Kühn P, Eichhorn K, et al. Terbinafin-resistente Dermatophytosen und Onychomykose durch Trichophyton rubrum. Der Hautarzt. 2021;72:868–877.

[41]

Safdar A, Ma J, Saliba F, Dupont B, Wingard JR, Hachem RY, et al. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine. 2010;89:236–244.

[42]

Kamiński DM. Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. Eur Biophys J. 2014;43:453–467.

[43]

Imamura H, Tanaka K, Hihara T, Umikawa M, Kamei T, Takahashi K, et al. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 1997;16:2745–2755.

[44]

Pruyne D, Bretscher A. Polarization of cell growth in yeast: I. Establishment and maintenance of polarity states. J Cell Sci. 2000;113:365–375.

[45]

Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol. 2002;4:32–41.

[46]

Miller KE, Lo W-C, Chou C-S, Park H-O. Temporal regulation of cell polarity via the interaction of the Ras GTPase Rsr1 and the scaffold protein Bem1. Mol Biol Cell. 2019;30:2543–2557.

[47]

Konzack S, Rischitor PE, Enke C, Fischer R. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell. 2005;16:497–506.

[48]

Fischer R, Zekert N, Takeshita N. Polarized growth in fungi–interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol. 2008;68:813–826.

[49]

Cheon SA, Bal J, Song Y, Hwang H, Kim AR, Kang WK, et al. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol. 2012;83:728–745.

[50]

Tani M, Toume M. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology. 2015;161:2369–2383.

[51]

Jahn B, Boukhallouk F, Lotz J, Langfelder K, Wanner G, Brakhage AA. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect Immun. 2000;68:3736–3739.

[52]

Latgé J-P. Aspergillus fumigatus and Aspergillosis. Clin Microbiol Rev. 1999;12:310–350.

[53]

Watanabe A, Fujii I, Tsai HF, Chang YC, Kwon-Chung KJ, Ebizuka Y. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol Lett. 2000;192:39–44.

[54]

Ben-Ami R, Kontoyiannis DP. Pathogenesis of invasive pulmonary Aspergillosis. In: Comarú Pasqualotto A, editor Aspergillosis: from diagnosis to prevention. Dordrecht: Springer Netherlands; 2010. p. 345–379.

[55]

Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol. 2019;128:20–28.

[56]

Samalova M, Carr P, Bromley M, Blatzer M, Moya-Nilges M, Latgé JP, et al. GPI anchored proteins in Aspergillus fumigatus and cell wall morphogenesis. Curr Top Microbiol Immunol. 2020;425:167–186.

[57]

Wong SSW, Daniel I, Gangneux J-P, Jayapal JM, Guegan H, Dellière S, et al. Differential interactions of serumand bronchoalveolar lavage fluid complement proteins with conidia of airborne fungal pathogen Aspergillus fumigatus. Infect Immun. 2020;88:e00212–e00220.

[58]

Keizer EM, Wösten HAB, de Cock H. EphA2-dependent internalization of A. fumigatus conidia in A549 lung cells is modulated by DHN-melanin. Front Microbiol. 2020;11:534118.

[59]

Cove DJ. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966;113:51–56.

[60]

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

[61]

Ramachandran G, Chidambaram R, Nachiappan V. FSH1 encodes lysophospholipase activity in Saccharomyces cerevisiae. Biotechnol Lett. 2021;43:279–286.

[62]

d’Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5’-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet. 1996;30:76–82.

[63]

Yelton MM, Hamer JE, Timberlake WE. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA. 1984;81:1470–1474.

[64]

Fernández-Ábalos JM, Fox H, Pitt C, Wells B, Doonan JH. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol. 1998;27:121–130.

[65]

Fontaine T. Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins. Glycobiology. 2003;13:169–177.

[66]

Damveld RA, Arentshorst M, VanKuyk PA, Klis FM, van den Hondel CAMJJ, Ram AFJ, et al. Characterisation of CwpA, a putative glycosylphosphatidylinositol-anchored cell wall mannoprotein in the filamentous fungus Aspergillus niger. Fungal Genet Biol. 2005;42:873–885.

[67]

de Groot PWJ, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, et al. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryotic Cell. 2004;3:955–965.

[68]

Takaku T, Ogura K, Kumeta H, Yoshida N, Inagaki F. Solution structure of a novel Cdc42 binding module of Bem1 and its interaction with Ste20 and Cdc42. J Biol Chem. 2010;285:19346–19353.

[69]

Wang J, Zhou H, Lu H, Du T, Luo Y, Wilson IBH, et al. Kexin-like endoprotease KexB is required for N-glycan processing, morphogenesis and virulence in Aspergillus fumigatus. Fungal Genet Biol. 2015;76:57–69.

[70]

Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, et al. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryotic Cell. 2007;6:1562–1569.

[71]

Li X, Gao M, Han X, Tao S, Zheng D, Cheng Y, et al. Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus. Infect Immun. 2012;80:429–440.

[72]

Xia D, Sun W-K, Tan M-M, Ding Y, Liu Z-C, Li P, et al. An adenoviral vector encoding full-length Dectin-1 promotes Aspergillus-induced innate immune response in macrophages. Lung. 2015;193:549–557.

[73]

Liu C, Wang M, Sun W, Cai F, Geng S, Su X, et al. PU.1 serves a critical role in the innate defense against Aspergillus fumigatus via dendritic cell-associated C-type lectin receptor-1 and toll-like receptors-2 and 4 in THP-1-derived macrophages. Mol Med Rep. 2017;15:4084–4092.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/