Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system

Shengsheng Ma , Senfeng Zhang , Kunming Liu , Tao Hu , Chunyi Hu

mLife ›› 2024, Vol. 3 ›› Issue (3) : 384 -386.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (3) : 384 -386. DOI: 10.1002/mlf2.12145
RESEARCH HIGHLIGHT

Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system

Author information +
History +
PDF

Cite this article

Download citation ▾
Shengsheng Ma, Senfeng Zhang, Kunming Liu, Tao Hu, Chunyi Hu. Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system. mLife, 2024, 3(3): 384-386 DOI:10.1002/mlf2.12145

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020; 18:67–83.

[2]

Hu C, Ni D, Nam KH, Majumdar S, McLean J, Stahlberg H, et al. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Mol Cell. 2022; 82:2754–2768.e5.

[3]

Tan R, Krueger RK, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, et al. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Mol Cell. 2022; 82:852–867.e5.

[4]

Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol Cell. 2019; 74:936–950.

[5]

Lu M, Yu C, Zhang Y, Ju W, Ye Z, Hua C, et al. Structure and genome editing of type I-B CRISPR-Cas. Nat Commun. 2024; 15:4126.

[6]

Cameron P, Coons MM, Klompe SE, Lied AM, Smith SC, Vidal B, et al. Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat Biotechnol. 2019; 37:1471–1477.

[7]

Li J, Zhao D, Zhang T, Xiong H, Hu M, Liu H, et al. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3. Sci Adv. 2024; 10:eadk8052.

[8]

Osakabe K, Wada N, Murakami E, Miyashita N, Osakabe Y. Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Res. 2021; 49:6347–6363.

[9]

Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun. 2019; 10:5302.

[10]

Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, et al. A compact Cascade-Cas3 system for targeted genome engineering. Nat Methods. 2020; 17:1183–1190.

[11]

Du K, Gong L, Li M, Yu H, Xiang H. Reprogramming the endogenous type I CRISPR-Cas system for simultaneous gene regulation and editing in Haloarcula hispanica. mLife. 2022; 1:40–50.

[12]

Wang J, Wei J, Li H, Li Y. High-efficiency genome editing of an extreme thermophile Thermus thermophilus using endogenous type I and type III CRISPR-Cas systems. mLife. 2022; 1:412–427.

[13]

Hu C, Myers MT, Zhou X, Hou Z, Lozen ML, Nam KH, et al. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Mol Cell. 2024; 84:463–475.

[14]

Li P, Dong D, Gao F, Xie Y, Huang H, Sun S, et al. Versatile and efficient mammalian genome editing with Type I-C CRISPR system of Desulfovibrio vulgaris. Sci China Life Sci. 2024;

[15]

Guo J, Gong L, Yu H, Li M, An Q, Liu Z, et al. Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells. Nat Commun. 2024; 15:7277.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/