EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin

Jing He , Yamin Gao , Jingyun Wang , H. M. Adnan Hameed , Shuai Wang , Cuiting Fang , Xirong Tian , Jingran Zhang , Xingli Han , Yanan Ju , Yaoju Tan , Junying Ma , Jianhua Ju , Jinxing Hu , Jianxiong Liu , Tianyu Zhang

mLife ›› 2024, Vol. 3 ›› Issue (3) : 459 -470.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (3) : 459 -470. DOI: 10.1002/mlf2.12139
ORIGINAL RESEARCH

EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin

Author information +
History +
PDF

Abstract

Treatment of Mycobacterium abscessus (Mab) infections is very challenging due to its intrinsic resistance to most available drugs. Therefore, it is crucial to discover novel anti-Mab drugs. In this study, we explored an intrinsic resistance mechanism through which Mab resists echinomycin (ECH). ECH showed activity against Mab at a minimum inhibitory concentration (MIC) of 2 µg/ml. A ΔembC strain in which the embC gene was knocked out showed hypersensitivity to ECH (MIC: 0.0078–0.0156 µg/ml). The MICs of ECH-resistant strains screened with reference to ΔembC ranged from 0.25 to 1 µg/ml. Mutations in EmbB, including D306A, D306N, R350G, V555I, and G581S, increased the Mab’s resistance to ECH when overexpressed in ΔembC individually (MIC: 0.25–0.5 µg/ml). These EmbB mutants, edited using the CRISPR/Cpf1 system, showed heightened resistance to ECH (MIC: 0.25–0.5 µg/ml). The permeability of these Mab strains with edited genes and overexpression was reduced, as evidenced by an ethidium bromide accumulation assay, but it remained significantly higher than that of the parent Mab. In summary, our study demonstrates that ECH exerts potent anti-Mab activity and confirms that EmbB and EmbC are implicated in Mab’s sensitivity to ECH. Mutation in EmbB may partially compensate for a loss of EmbC function.

Keywords

echinomycin / EmbB / EmbC / functional compensation / Mycobacterium abscessus

Cite this article

Download citation ▾
Jing He, Yamin Gao, Jingyun Wang, H. M. Adnan Hameed, Shuai Wang, Cuiting Fang, Xirong Tian, Jingran Zhang, Xingli Han, Yanan Ju, Yaoju Tan, Junying Ma, Jianhua Ju, Jinxing Hu, Jianxiong Liu, Tianyu Zhang. EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin. mLife, 2024, 3(3): 459-470 DOI:10.1002/mlf2.12139

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020; 9:2541.

[2]

Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother. 2012; 67:810–818.

[3]

Brown-Elliott BA, Philley JV. Rapidly growing mycobacteria. Microbiol Spectr. 2017; 5:1.

[4]

Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol. 2020; 18:392–407.

[5]

Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerging Infect Dis. 2015; 21:1638–1646.

[6]

Sanguinetti M, Ardito F, Fiscarelli E, La Sorda M, D’Argenio P, Ricciotti G, et al. Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus in a patient with cystic fibrosis. J Clin Microbiol. 2001; 39:816–819.

[7]

Jankute M, Cox JAG, Harrison J, Besra GS. Assembly of the mycobacterial cell wall. Annu Rev Microbiol. 2015; 69:405–423.

[8]

Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol. 2004; 53:391–403.

[9]

Zhang N, Torrelles JB, McNeil MR, Escuyer VE, Khoo KH, Brennan PJ, et al. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol. 2003; 50:69–76.

[10]

Lee RE, Brennan PJ, Besra GS. Mycobacterial arabinan biosynthesis: the use of synthetic arabinoside acceptors in the development of an arabinosyl transfer assay. Glycobiology. 1997; 7:1121–1128.

[11]

Escuyer VE, Lety MA, Torrelles JB, Khoo KH, Tang JB, Rithner CD, et al. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem. 2001; 276:48854–48862.

[12]

Gilleron M, Nigou J, Nicolle D, Quesniaux V, Puzo G. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2. Chem Biol. 2006; 13:39–47.

[13]

Goude R, Amin AG, Chatterjee D, Parish T. The critical role of embC in Mycobacterium tuberculosis. J Bacteriol. 2008; 190:4335–4341.

[14]

Kuang W, Zhang H, Wang X, Yang P. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm Sin B. 2022; 12:3201–3214.

[15]

Yaşar N, Tezcan Ülger S, Ülger M, Arslantürk A, Aslan G, Köksal F. Etambutole Dirençli ve Duyarlı Mycobacterium tuberculosis Kompleksi Klinik İzolatlarında embA, embB ve embC Gen Bölgesi Mutasyonları. Mikrobiyol Nul. 2023; 57:45–59.

[16]

Zhang L, Zhao Y, Gao Y, Wu L, Gao R, Zhang Q, et al. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science. 2020; 368:1211–1219.

[17]

Xiang X, Gong Z, Deng W, Sun Q, Xie J. Mycobacterial ethambutol responsive genes and implications in antibiotics resistance. J Drug Target. 2021; 29:284–293.

[18]

Ramaswamy SV, Amin AG, Göksel S, Stager CE, Dou SJ, El Sahly H, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000; 44:326–336.

[19]

Wang S, Cai X, Yu W, Zeng S, Zhang J, Guo L, et al. Arabinosyltransferase C mediates multiple drugs intrinsic resistance by altering cell envelope permeability in Mycobacterium abscessus. Microbiology Spectrum. 2022; 10:e0276321.

[20]

Sparks IL, Nijjer J, Yan J, Morita YS. Lipoarabinomannan regulates septation in Mycobacterium smegmatis. bioRxiv. 2023.

[21]

Chen C, Chen X, Ren B, Guo H, Abdel-Mageed WM, Liu X, et al. Characterization of Streptomyces sp. LS462 with high productivity of echinomycin, a potent antituberculosis and synergistic antifungal antibiotic. J Ind Microbiol Biotechnol. 2021; 48:kuab079.

[22]

Liu Y, Tan Y, Islam MM, Cao Y, Lu X, Zeng S, et al. Assessment of clofazimine and TB47 combination activity against Mycobacterium abscessus using a bioluminescent approach. Antimicrob Agents Chemother. 2020; 64:e01881-19.

[23]

Rodrigues L, Aínsa JA, Viveiros M. Measuring efflux and permeability in mycobacteria. Methods Mol Biol. 2021; 2314:231–245.

[24]

Rodrigues L, Ramos J, Couto I, Amaral L, Viveiros M. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol. 2011; 11:35.

[25]

Banaei N, Kincaid EZ, Lin SYG, Desmond E, Jacobs, Jr. WR, Ernst JD. Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green. Antimicrob Agents Chemother. 2009; 53:3799–3802.

[26]

Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol. 2018; 9:2179.

[27]

Griffith DE, Daley CL. Treatment of Mycobacterium abscessus pulmonary disease. Chest. 2022; 161:64–75.

[28]

Singh G, Kumar A, Maan P, Kaur J. Cell wall associated factors of Mycobacterium tuberculosis as major virulence determinants: current perspectives in drugs discovery and design. Curr Drug Targets. 2017; 18:1904–1918.

[29]

Grzegorzewicz AE, De sousa-D’auria C, McNeil MR, Huc-Claustre E, Jones V, Petit C, et al. Assembling of the Mycobacterium tuberculosis cell wall core. J Biol Chem. 2016; 291:18867–18879.

[30]

Wang S, Zhang J, Hameed HMA, Ding J, Guan P, Fang X, et al. Amino acid 17 in QRDR of Gyrase A plays a key role in fluoroquinolones susceptibility in mycobacteria. Microbiol Spectr. 2023; 11:e0280923.

[31]

Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC. CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol. 2017; 83:e0094717.

[32]

Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008; 52:2503–2511.

[33]

Prinzis S, Chatterjee D, Brennan PJ. Structure and antigenicity of lipoarabinomannan from Mycobacterium bovis BCG. J Gen Microbiol. 1993; 139:2649–2658.

[34]

Rahlwes KC, Puffal J, Morita YS. Purification and analysis of mycobacterial phosphatidylinositol mannosides, lipomannan, and lipoarabinomannan. Methods Mol Biol. 2019; 1954:59–75.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/