Catalytically active prokaryotic Argonautes employ phospholipase D family proteins to strengthen immunity against different genetic invaders

Feiyue Cheng , Aici Wu , Zhihua Li , Jing Xu , Xifeng Cao , Haiying Yu , Zhenquan Liu , Rui Wang , Wenyuan Han , Hua Xiang , Ming Li

mLife ›› 2024, Vol. 3 ›› Issue (3) : 403 -416.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (3) : 403 -416. DOI: 10.1002/mlf2.12138
ORIGINAL RESEARCH

Catalytically active prokaryotic Argonautes employ phospholipase D family proteins to strengthen immunity against different genetic invaders

Author information +
History +
PDF

Abstract

Prokaryotic Argonautes (pAgos) provide bacteria and archaea with immunity against plasmids and viruses. Catalytically active pAgos utilize short oligonucleotides as guides to directly cleave foreign nucleic acids, while inactive pAgos lacking catalytic residues employ auxiliary effectors, such as nonspecific nucleases, to trigger abortive infection upon detection of foreign nucleic acids. Here, we report a unique group of catalytically active pAgo proteins that frequently associate with a phospholipase D (PLD) family protein. We demonstrate that this particular system employs the catalytic center of the associated PLD protein rather than that of pAgo to restrict plasmid DNA, while interestingly, its immunity against a single-stranded DNA virus relies on the pAgo catalytic center and is enhanced by the PLD protein. We also find that this system selectively suppresses viral DNA propagation without inducing noticeable abortive infection outcomes. Moreover, the pAgo protein alone enhances gene editing, which is unexpectedly inhibited by the PLD protein. Our data highlight the ability of catalytically active pAgo proteins to employ auxiliary proteins to strengthen the targeted eradication of different genetic invaders and underline the trend of PLD nucleases to participate in host immunity.

Keywords

Argonaute / DNA interference / genome editing / phage defense / PLD protein

Cite this article

Download citation ▾
Feiyue Cheng, Aici Wu, Zhihua Li, Jing Xu, Xifeng Cao, Haiying Yu, Zhenquan Liu, Rui Wang, Wenyuan Han, Hua Xiang, Ming Li. Catalytically active prokaryotic Argonautes employ phospholipase D family proteins to strengthen immunity against different genetic invaders. mLife, 2024, 3(3): 403-416 DOI:10.1002/mlf2.12138

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009; 4:29.

[2]

Hegge JW, Swarts DC, van der Oost J. Prokaryotic Argonaute proteins: novel genome-editing tools? Nat Rev Microbiol. 2018; 16:5–11.

[3]

Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008; 9:22–32.

[4]

Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009; 457:413–420.

[5]

Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013; 14:447–459.

[6]

Swarts DC, Jore MM, Westra ER, Zhu YF, Janssen JH, Snijders AP, et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature. 2014; 507:258–261.

[7]

Kuzmenko A, Oguienko A, Esyunina D, Yudin D, Petrova M, Kudinova A, et al. DNA targeting and interference by a bacterial Argonaute nuclease. Nature. 2020; 587:632–637.

[8]

Zaremba M, Dakineviciene D, Golovinas E, Zagorskaitė E, Stankunas E, Lopatina A, et al. Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD+ depletion. Nat Microbiol. 2022; 7:1857–1869.

[9]

Zeng Z, Chen Y, Pinilla-Redondo R, Shah SA, Zhao F, Wang C, et al. A short prokaryotic Argonaute activates membrane effector to confer antiviral defense. Cell Host Microbe. 2022; 30:930–943.

[10]

Swarts DC, Makarova K, Wang YL, Nakanishi K, Ketting RF, Koonin EV, et al. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. 2014; 21:743–753.

[11]

Ryazansky S, Kulbachinskiy A, Aravin AA. The expanded universe of prokaryotic Argonaute proteins. mBio. 2018; 9:e01935–18.

[12]

Koopal B, Mutte SK, Swarts DC. A long look at short prokaryotic Argonautes. Trends Cell Biol. 2023; 33:605–618.

[13]

Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, et al. A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA. 2016; 113:4057–4062.

[14]

Doxzen KW, Doudna JA. DNA recognition by an RNA-guided bacterial Argonaute. PLoS One. 2017; 12:e0177097.

[15]

Hegge JW, Swarts DC, Chandradoss SD, Cui TJ, Kneppers J, Jinek M, et al. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute. Nucleic Acids Res. 2019; 47:5809–5821.

[16]

Kuzmenko A, Yudin D, Ryazansky S, Kulbachinskiy A, Aravin AA. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res. 2019; 47:5822–5836.

[17]

Lisitskaya L, Shin Y, Agapov A, Olina A, Kropocheva E, Ryazansky S, et al. Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity. Nat Commun. 2022; 13:4624.

[18]

Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol Cell. 2013; 51:594–605.

[19]

Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. 2015; 43:5120–5129.

[20]

Zander A, Willkomm S, Ofer S, van Wolferen M, Egert L, Buchmeier S, et al. Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii. Nat Microbiol. 2017; 2:17034.

[21]

Olina A, Kuzmenko A, Ninova M, Aravin AA, Kulbachinskiy A, Esyunina D. Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus. RNA Biol. 2020; 17:677–688.

[22]

Kropocheva E, Kuzmenko A, Aravin AA, Esyunina D, Kulbachinskiy A. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis. Nucleic Acids Res. 2021; 49:4054–4065.

[23]

Liu Y, Li W, Jiang X, Wang Y, Zhang Z, Liu Q, et al. A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis. Nucleic Acids Res. 2021; 49:1597–1608.

[24]

Cao Y, Sun W, Wang J, Sheng G, Xiang G, Zhang T, et al. Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37°C. Cell Discov. 2019; 5:38.

[25]

Lisitskaya L, Kropocheva E, Agapov A, Prostova M, Panteleev V, Yudin D, et al. Bacterial Argonaute nucleases reveal different modes of DNA targeting in vitro and in vivo. Nucleic Acids Res. 2023; 51:5106–5124.

[26]

Swarts DC, Szczepaniak M, Sheng G, Chandradoss SD, Zhu Y, Timmers EM, et al. Autonomous generation and loading of DNA guides by bacterial argonaute. Mol Cell. 2017; 65:985–998.

[27]

Sun S, Xu D, Zhu L, Hu B, Huang Z. A programmable, DNA-exclusively-guided Argonaute DNase and its higher cleavage specificity achieved by 5′-hydroxylated guide. Biomolecules. 2022; 12:1340.

[28]

Hunt EA, Evans TC, Tanner NA. Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro. PLoS One. 2018; 13:e0203073.

[29]

Vaiskunaite R, Vainauskas J, Morris JJL, Potapov V, Bitinaite J. Programmable cleavage of linear double-stranded DNA by combined action of Argonaute CbAgo from Clostridium butyricum and nuclease deficient RecBC helicase from E. coli. Nucleic Acids Res. 2022; 50:4616–4629.

[30]

Lee KZ, Mechikoff MA, Kikla A, Liu A, Pandolfi P, Fitzgerald K, et al. NgAgo possesses guided DNA-nicking activity. Nucleic Acids Res. 2021; 49:9926–9937.

[31]

Esyunina D, Okhtienko A, Olina A, Panteleev V, Prostova M, Aravin AA, et al. Specific targeting of plasmids with Argonaute enables genome editing. Nucleic Acids Res. 2023; 51:4086–4099.

[32]

Huang S, Wang K, Mayo SL. Genome manipulation by guide-directed Argonaute cleavage. Nucleic Acids Res. 2023; 51:4078–4085.

[33]

Garb J, Lopatina A, Bernheim A, Zaremba M, Siksnys V, Melamed S, et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat Microbiol. 2022; 7:1849–1856.

[34]

Koopal B, Potocnik A, Mutte SK, Aparicio-Maldonado C, Lindhoud S, Vervoort JJM, et al. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell. 2022; 185:1471–1486.

[35]

Song X, Lei S, Liu S, Liu Y, Fu P, Zeng Z, et al. Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection. Nat Commun. 2023; 14:6970.

[36]

Koonin EV. A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins. Trends Biochem Sci. 1996; 21:242–243.

[37]

Ponting CP, Kerr ID. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Prot Sci. 1996; 5:914–922.

[38]

Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev. 2011; 111:6064–6119.

[39]

Zhao Y, Stuckey JA, Lohse DL, Dixon JE. Expression, characterization, and crystallization of a member of the novel phospholipase D family of phosphodiesterases. Prot Sci. 1997; 6:2655–2658.

[40]

Sasnauskas G, Zakrys L, Zaremba M, Cosstick R, Gaynor JW, Halford SE, et al. A novel mechanism for the scission of double-stranded DNA: BfiI cuts both 3′-5′ and 5′-3′ strands by rotating a single active site. Nucleic Acids Res. 2010; 38:2399–2410.

[41]

Xiong L, Liu S, Chen S, Xiao Y, Zhu B, Gao Y, et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat Commun. 2019; 10:1688.

[42]

Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. TIM. 2023; 31:405–418.

[43]

Li M, Wang R, Zhao DH, Xiang H. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 2014; 42:2483–2492.

[44]

Li M, Wang R, Xiang H. Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res. 2014; 42:7226–7235.

[45]

Müller-Santos M, de Souza EM, Pedrosa Fde O, Mitchell DA, Longhi S, Carrière F, et al. First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea. Biochem Biophys Acta. 2009; 1791:719–729.

[46]

Tadeo X, López-Méndez B, Trigueros T, Laín A, Castaño D, Millet O. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol. 2009; 7:e1000257.

[47]

Zhang Q, Berkey R, Blakeslee JJ, Lin J, Ma X, King H, et al. Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. J Exp Bot. 2018; 69:3675–3688.

[48]

Li J, Wang X. Phospholipase D and phosphatidic acid in plant immunity. Plant Sci. 2019; 279:45–50.

[49]

Zhu Y, Hu X, Wang P, Wang H, Ge X, Li F, et al. The phospholipase D gene GhPLDδ confers resistance to Verticillium dahliae and improves tolerance to salt stress. Plant Sci. 2022; 321:111322.

[50]

Grazulis S, Manakova E, Roessle M, Bochtler M, Tamulaitiene G, Huber R, et al. Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc Natl Acad Sci USA. 2005; 102:15797–15802.

[51]

Li M, Gong L, Cheng F, Yu H, Zhao D, Wang R, et al. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science. 2021; 372:eabe5601.

[52]

Cai S, Cai L, Liu H, Liu X, Han J, Zhou J, et al. Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl Environ Microbiol. 2012; 78:1946–1952.

[53]

Liu H, Han J, Liu X, Zhou J, Xiang H. Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genomics. 2011; 38:261–269.

[54]

Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015; 81:2506–2514.

[55]

Wu Z, Liu J, Yang H, Liu H, Xiang H. Multiple replication origins with diverse control mechanisms in Haloarcula hispanica. Nucleic Acids Res. 2014; 42:2282–2294.

[56]

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021; 49: W293–W296.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/