Oral microbiome in human health and diseases

Siqi Tian , Tao Ding , Hui Li

mLife ›› 2024, Vol. 3 ›› Issue (3) : 367 -383.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (3) : 367 -383. DOI: 10.1002/mlf2.12136
REVIEW

Oral microbiome in human health and diseases

Author information +
History +
PDF

Abstract

The oral cavity contains the second-largest microbiota in the human body. The cavity’s anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases—not only in the oral cavity but also in organs distal to the mouth—such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome’s composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.

Keywords

human diseases / microbiome dynamics / microbiome intervention / microecology / oral microbiome

Cite this article

Download citation ▾
Siqi Tian, Tao Ding, Hui Li. Oral microbiome in human health and diseases. mLife, 2024, 3(3): 367-383 DOI:10.1002/mlf2.12136

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou WY, et al. The integrative human microbiome project. Nature. 2019; 569:641–648.

[2]

Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New insights into human nostril microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems. 2018; 3: e00187–e00218.

[3]

After the integrative human microbiome project, what’s next for the microbiome community? Nature. 2019; 569:599.

[4]

Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018; 200:525–540.

[5]

Shi H, Shi Q, Grodner B, Lenz JS, Zipfel WR, Brito IL, et al. Highly multiplexed spatial mapping of microbial communities. Nature. 2020; 588:676–681.

[6]

Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010; 192:5002–5017.

[7]

Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019; 68:1108–1114.

[8]

Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell. 2018; 9:488–500.

[9]

Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the oral microbiome: the site-specialist hypothesis. Annu Rev Microbiol. 2019; 73:335–358.

[10]

Mark Welch JL, Ramírez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe. 2020; 28:160–168.

[11]

Segata N, Haake S, Mannon P, Lemon KP, Waldron L, Gevers D, et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012; 13: R42–R60.

[12]

Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing?”. J Dent Res. 2015; 94:1628–1637.

[13]

Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev. 2007; 71:653–670.

[14]

Samaranayake L, Matsubara VH. Normal oral flora and the oral ecosystem. Dent Clin North Am. 2017; 61:199–215.

[15]

Crabbé A, Jensen , Bjarnsholt T, Coenye T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. TIM. 2019; 27:850–863.

[16]

Abdeljelil N, Ben Miloud Yahia N, Landoulsi A, Chatti A, Wattiez R, Gillan D, et al. Proteomic and morphological insights into the exposure of Cupriavidus metallidurans CH34 planktonic cells and biofilms to aluminium. J Hazard Mater. 2024; 465:133403–133413.

[17]

Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Multispecies biofilms in fermentation: biofilm formation, microbial interactions, and communication. Compr Rev Food Sci Food Saf. 2022; 21:3346–3375.

[18]

Li H, Duncan C, Townend J, Killham K, Smith LM, Johnston P, et al. Nitrate-reducing bacteria on rat tongues. Appl Environ Microbiol. 1997; 63:924–930.

[19]

Schreiber F, Stief P, Gieseke A, Heisterkamp IM, Verstraete W, de Beer D, et al. Denitrification in human dental plaque. BMC Biol. 2010; 8:24–34.

[20]

Zetterquist W, Pedroletti C, Lundberg JO, Alving K. Salivary contribution to exhaled nitric oxide. Eur Respir J. 1999; 13:327–333.

[21]

Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and oral cancer as a complex and dynamic microenvironment: a narrative review from etiology to prognosis. Int J Mol Sci. 2022; 23:8323–8339.

[22]

Su SC, Chang LC, Huang HD, Peng CY, Chuang CY, Chen YT, et al. Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis. 2021; 42:127–135.

[23]

Gomez A, Nelson KE. The oral microbiome of children: development, disease, and implications beyond oral health. Microb Ecol. 2017; 73:492–503.

[24]

Anukam K, Agbakoba N. A comparative study of the oral microbiome compositions of healthy postmenopausal, premenopausal, and prepubertal Nigerian females, using 16S rRNA metagenomics methods. Niger J Clin Pract. 2017; 20:1250–1258.

[25]

Jang H, Patoine A, Wu TT, Castillo DA, Xiao J. Oral microflora and pregnancy: a systematic review and meta-analysis. Sci Rep. 2021; 11:16870–16901.

[26]

Zhang Y, Wu Z, Li L, Wang X, Fan W, Zhao J. Characterizing the supragingival microbiome of healthy pregnant women. Front Cell Infect Microbiol. 2022; 12:1016523–1016538.

[27]

Metcalf JL, Ursell LK, Knight R. Ancient human oral plaque preserves a wealth of biological data. Nat Genet. 2014; 46:321–323.

[28]

Lassalle F, Spagnoletti M, Fumagalli M, Shaw L, Dyble M, Walker C, et al. Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts in commensal balance and pathogen load linked to diet. Mol Ecol. 2018; 27:182–195.

[29]

Wang J, Jia Z, Zhang B, Peng L, Zhao F. Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut. 2020; 69:1355–1356.

[30]

Gibbons RJ, Houte JV. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol. 1975; 29:19–44.

[31]

Riggio M, Lennon A, Rolph H, Hodge P, Donaldson A, Maxwell A, et al. Molecular identification of bacteria on the tongue dorsum of subjects with and without halitosis. Oral Dis. 2008; 14:251–258.

[32]

Wilbert SA, Mark Welch JL, Borisy GG. Spatial ecology of the human tongue dorsum microbiome. Cell Rep. 2020; 30:4003–4015.e3.

[33]

Miller CS, Danaher RJ, Kirakodu S, Carlson CR, Mumper RJ. Effect of chewing gum containing Xylitol and blackberry powder on oral bacteria: a randomized controlled crossover trial. Arch Oral Biol. 2022; 143:105523–105531.

[34]

Muhoozi GKM, Li K, Atukunda P, Skaare AB, Willumsen T, Enersen M, et al. Child saliva microbiota and caries: a randomized controlled maternal education trial in rural Uganda. Sci Rep. 2022; 12:7857–7867.

[35]

Newman BA, Rosebrough CN, Tamashiro RA, Dias Ribeiro AP, Whitlock JA, Sidhu G, et al. A randomized controlled trial to evaluate the effectiveness of a novel mouth rinse in patients with gingivitis. BMC Oral Health. 2022; 22:461–470.

[36]

Ranjith A, Niranjana JM, Baiju KV. Adjunctive benefit of ozonized water irrigation with mechanical debridement in the management of Stage III periodontitis: a randomized controlled clinical and biochemical study. Int J Dent Hyg. 2022; 20:364–370.

[37]

Jakubovics NS. Saliva as the sole nutritional source in the development of multispecies communities in dental plaque. Microbiol Spectr. 2015; 3:1–11.

[38]

Jansson , Huang L, Malkey R, Govoni M, Nihlén C, Olsson A, et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol. 2008; 4:411–417.

[39]

Hezel M, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015; 21:7–16.

[40]

Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004; 37:395–400.

[41]

Doel JJ, Hector MP, Amirtham CV, Al-Anzan LA, Benjamin N, Allaker RP. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur J Oral Sci. 2004; 112:424–428.

[42]

Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008; 51:784–790.

[43]

Burleigh M, Liddle L, Muggeridge DJ, Monaghan C, Sculthorpe N, Butcher J, et al. Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose. Nitric oxide. 2019; 89:54–63.

[44]

Petersson J, Jädert C, Phillipson M, Borniquel S, Lundberg JO, Holm L. Physiological recycling of endogenous nitrate by oral bacteria regulates gastric mucus thickness. Free Radic Biol Med. 2015; 89:241–247.

[45]

Fahim MM, Saber SEM, Elkhatib WF, Nagy MM, Schafer E. The antibacterial effect and the incidence of post-operative pain after the application of nano-based intracanal medications during endodontic retreatment: a randomized controlled clinical trial. Clin Oral Investig. 2022; 26:2155–2163.

[46]

Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell. 2022; 185:3307–3328.

[47]

Hoffstedt T, Skov Hansen LB, Twetman S, Sonesson M. Effect of an enzyme-containing mouthwash on the dental biofilm and salivary microbiome in patients with fixed orthodontic appliances: a randomized placebo-controlled pilot trial. Eur J Orthod. 2023; 45:96–102.

[48]

Aguilera FR, Viñas M, Sierra JM, Vinuesa T, R Fernandez de Henestrosa A, Furmanczyk M, et al. Substantivity of mouth-rinse formulations containing cetylpyridinium chloride and O-cymen-5-ol: a randomized-crossover trial. BMC Oral Health. 2022; 22:646–655.

[49]

Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000. 2016; 70:80–92.

[50]

Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. TIM. 2016; 24:477–489.

[51]

Carpenter GH. Salivary factors that maintain the normal oral commensal microflora. J Dent Res. 2020; 99:644–649.

[52]

Gibbins HL, Proctor GB, Yakubov GE, Wilson S, Carpenter GH. SIgA binding to mucosal surfaces is mediated by mucin-mucin interactions. PLoS One. 2015; 10: e0119677–e0119690.

[53]

Ployon S, Belloir C, Bonnotte A, Lherminier J, Canon F, Morzel M. The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral epithelium. Arch Oral Biol. 2016; 61:149–155.

[54]

Vazquez JA. Options for the management of mucosal candidiasis in patients with AIDS and HIV infection. Pharmacotherapy. 1999; 19:76–87.

[55]

Palmer RJ, Shah N, Valm A, Paster B, Dewhirst F, Inui T, et al. Interbacterial adhesion networks within early oral biofilms of single human hosts. Appl Environ Microbiol. 2017; 83: e00407–e00417.

[56]

Cisar JO, Sandberg AL, Abeygunawardana C, Reddy GP, Bush CA. Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. Glycobiology. 1995; 5:655–662.

[57]

Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018; 16:745–759.

[58]

Ferrer MD, López-López A, Nicolescu T, Perez-Vilaplana S, Boix-Amorós A, Dzidic M, et al. Topic application of the probiotic Streptococcus dentisani improves clinical and microbiological parameters associated with oral health. Front Cell Infect Microbiol. 2020; 10:465–479.

[59]

Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019; 17:371–382.

[60]

Miller DP, Lamont RJ. Signaling systems in oral bacteria. In: Belibasakis GN, Hajishengallis G, Bostanci N, Curtis MA eds. Oral mucosal immunity and microbiome. Vol. 1197; 2019. p. 27–43.

[61]

Rued BE, Covington BC, Bushin LB, Szewczyk G, Laczkovich I, Seyedsayamdost MR, et al. Erratum for Rued et al., “Quorum Sensing in Streptococcus mutans regulates production of Tryglysin, a novel RaS-RiPP antimicrobial compound”. mBio. 2021; 12: e02688–e02713.

[62]

Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017; 551:313–320.

[63]

Lin CW, Chen YT, Ho HH, Hsieh PS, Kuo YW, Lin JH, et al. Lozenges with probiotic strains enhance oral immune response and health. Oral Dis. 2022; 28:1723–1732.

[64]

Liu K, Kong XJ. Altered salivary microbiota following Bifidobacterium animalis subsp. lactis BL-11 supplementation are associated with anthropometric growth and social behavior severity in individuals with Prader-Willi syndrome. Probiotics Antimicrob Proteins. 2022; 14:699–711.

[65]

Gedam KY, Katre AN. Efficacy of probiotic, chlorhexidine, and sodium fluoride mouthrinses on mutans streptococci in 8- to 12-year-old children: a crossover randomized trial. Lifestyle Genomics. 2022; 15:35–44.

[66]

Ranjith A, Nazimudeen NB, Baiju KV. Probiotic mouthwash as an adjunct to mechanical therapy in the treatment of stage II periodontitis: a randomized controlled clinical trial. Int J Dent Hyg. 2022; 20:415–421.

[67]

de Oliveira AM, Lourenço TGB, Colombo APV. Impact of systemic probiotics as adjuncts to subgingival instrumentation on the oral-gut microbiota associated with periodontitis: a randomized controlled clinical trial. J Periodontol. 2022; 93:31–44.

[68]

Ramos-Sevillano E, Wade WG, Mann A, Gilbert A, Lambkin-Williams R, Killingley B, et al. The effect of influenza virus on the human oropharyngeal microbiome. Clin Infect Dis. 2019; 68:1993–2002.

[69]

Bao L, Zhang C, Dong J, Zhao L, Li Y, Sun J. Oral microbiome and SARS-CoV-2: beware of lung co-infection. Front Microbiol. 2020; 11:1840–1853.

[70]

Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020; 82:214–224.

[71]

Shoer S, Shilo S, Godneva A, Ben-Yacov O, Rein M, Wolf BC, et al. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. Nat Commun. 2023; 14:5384–5398.

[72]

Zhang CZ, Cheng XQ, Li JY, Zhang P, Yi P, Xu X, et al. Saliva in the diagnosis of diseases. Int J Oral Sci. 2016; 8:133–137.

[73]

Martínez M, Postolache TT, García-Bueno B, Leza JC, Figuero E, Lowry CA, et al. The role of the oral microbiota related to periodontal diseases in anxiety, mood and trauma- and stress-related disorders. Front Psychiatry. 2022; 12:814177–814198.

[74]

Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007; 369:51–59.

[75]

Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011; 90:294–303.

[76]

Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008; 46:1407–1417.

[77]

Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015; 15:30–44.

[78]

Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017; 75:7–23.

[79]

Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011; 10:497–506.

[80]

Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013; 7:1016–1025.

[81]

Kademani D. Oral cancer. Mayo Clin Proc. 2007; 82:878–887.

[82]

Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, et al. Variations in oral microbiota associated with oral cancer. Sci Rep. 2017; 7:11773–11783.

[83]

Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2020; 9:476–487.

[84]

Stasiewicz M, Karpinski TM. The oral microbiota and its role in carcinogenesis. Sem Cancer Biol. 2022; 86:633–642.

[85]

Mager D, Haffajee A, Devlin P, Norris C, Posner M, Goodson J. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005; 3:27–35.

[86]

Yang CY, Yeh YM, Yu HY, Chin CY, Hsu CW, Liu H, et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol. 2018; 9:862–877.

[87]

Sun J, Tang Q, Yu S, Xie M, Xie Y, Chen G, et al. Role of the oral microbiota in cancer evolution and progression. Cancer Med. 2020; 9:6306–6321.

[88]

Ni Y, Schwaneberg U, Sun ZH. Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 2008; 261:1–11.

[89]

Mammen MJ, Scannapieco FA, Sethi S. Oral-lung microbiome interactions in lung diseases. Periodontol 2000. 2020; 83:234–241.

[90]

Morinaga Y, Take Y, Sasaki D, Ota K, Kaku N, Uno N, et al. Exploring the microbiota of upper respiratory tract during the development of pneumonia in a mouse model. PLoS One. 2019; 14: e0222589–e0222600.

[91]

Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015; 6: e00037–e00047.

[92]

Zhang J, Wu Y, Liu J, Yang Y, Li H, Wu X, et al. Differential oral microbial input determines two microbiota pneumo-types associated with health status. Adv Sci. 2022; 9: e2203115–e2203130.

[93]

Bakaletz LO. Viral-bacterial co-infections in the respiratory tract. Curr Opin Microbiol. 2017; 35:30–35.

[94]

Gray RM, Vidwans M. Mixed anaerobic thoracic empyema: the first report of Filifactor alocis causing extra-oral disease. New Microbes New Infect. 2019; 29:100528–100531.

[95]

Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, et al. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol. 2021; 13:1897328–1897345.

[96]

Durack J, Christian LS, Nariya S, Gonzalez J, Bhakta NR, Ansel KM, et al. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol. 2020; 146:1016–1026.

[97]

Xu H, Li X, Zheng X, Xia Y, Fu Y, Li X, et al. Pediatric obstructive sleep apnea is associated with changes in the oral microbiome and urinary metabolomics profile: a pilot study. J Clin Sleep Med. 2018; 14:1559–1567.

[98]

Mascitti M, Togni L, Troiano G, Caponio VCA, Gissi DB, Montebugnoli L, et al. Beyond head and neck cancer: the relationship between oral microbiota and tumour development in distant organs. Front Cell Infect Microbiol. 2019; 9:232–240.

[99]

Hu Y, Xu X, Ouyang YB, He C, Li NS, Xie C, et al. Analysis of oral microbiota alterations induced by Helicobacter pylori infection and vonoprazan-amoxicillin dual therapy for Helicobacter pylori eradication. Helicobacter. 2022; 27: e12923–e12933.

[100]

Sun JH, Li XL, Yin J, Li YH, Hou BX, Zhang Z. A screening method for gastric cancer by oral microbiome detection. Oncol Rep. 2018; 39:2217–2224.

[101]

Zhang X, Li C, Cao W, Zhang Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front Cell Infect Microbiol. 2021; 11:559148–559159.

[102]

Wu F, Yang L, Hao Y, Zhou B, Hu J, Yang Y, et al. Oral and gastric microbiome in relation to gastric intestinal metaplasia. Int J Cancer. 2022; 150:928–940.

[103]

Chen X, Winckler B, Lu M, Cheng H, Yuan Z, Yang Y, et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS One. 2015; 10: e0143603–e0143619.

[104]

Zhao Y, Zhao W, Li J, Lin S, Li L, Ren Z, et al. Effect of dietary consumption on the survival of esophageal squamous cell carcinoma: a prospective cohort study. Eur J Clin Nutr. 2023; 77:55–64.

[105]

Song Q, Wang X, Yu IT, Huang C, Zhou X, Li J, et al. Processed food consumption and risk of esophageal squamous cell carcinoma: a case-control study in a high-risk area. Cancer Sci. 2012; 103:2007–2011.

[106]

Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, et al. Fap2 mediates fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016; 20:215–225.

[107]

Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015; 42:344–355.

[108]

Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018; 67:120–127.

[109]

Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012; 61:582–588.

[110]

Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimer’s Dis. 2013; 36:665–677.

[111]

Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, et al. Oral microbiota and Alzheimer’s disease: do all roads lead to Rome? Pharmacol Res. 2020; 151:104582–104641.

[112]

Chen L, Cao H, Wu X, Xu X, Ji X, Wang B, et al. Effects of oral health intervention strategies on cognition and microbiota alterations in patients with mild Alzheimer’s disease: a randomized controlled trial. Geriatr Nurs. 2022; 48:103–110.

[113]

Goodson JM, Hartman ML, Shi P, Hasturk H, Yaskell T, Vargas J, et al. The salivary microbiome is altered in the presence of a high salivary glucose concentration. PLoS One. 2017; 12: e0170437–e0170457.

[114]

Katz PP, Wirthlin Jr. MR, Szpunar SM, Selby JV, Sepe SJ, Showstack JA. Epidemiology and prevention of periodontal disease in individuals with diabetes. Diabetes Care. 1991; 14:375–385.

[115]

Takahashi K, Nishimura F, Kurihara M, Iwamoto Y, Takashiba S, Miyata T, et al. Subgingival microflora and antibody responses against periodontal bacteria of young Japanese patients with type 1 diabetes mellitus. J Int Acad Periodontol. 2001; 3:104–111.

[116]

Camen GC, Caraivan O, Olteanu M, Camen A, Bunget A, Popescu FC, et al. Inflammatory reaction in chronic periodontopathies in patients with diabetes mellitus. Roman J Morphol Embryol. 2012; 53:55–60.

[117]

Zambon JJ, Reynolds H, Fisher JG, Shlossman M, Dunford R, Genco RJ. Microbiological and immunological studies of adult periodontitis in patients with noninsulin-dependent diabetes mellitus. J Periodontol. 1988; 59:23–31.

[118]

Balmasova IP, Lomakin YA, Babaev EA, Tsarev VN, Gabibov AG, Smirnov IV, et al. “Shielding” of cytokine induction by the periodontal microbiome in patients with periodontitis associated with type 2 diabetes mellitus. Acta Nat. 2019; 11:79–87.

[119]

Xu Y, Zhang M, Zhang J, Sun Z, Ran L, Ban Y, et al. Differential intestinal and oral microbiota features associated with gestational diabetes and maternal inflammation. Am J Physiol Endocrinol Metab. 2020; 319: E247–E253.

[120]

Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015; 131:371–380; discussion 80.

[121]

Carrizales-Sepúlveda EF, Ordaz-Farías A, Vera-Pineda R, Flores-Ramírez R. Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart, Lung Circ. 2018; 27:1327–1334.

[122]

Chu XJ, Cao NW, Zhou HY, Meng X, Guo B, Zhang HY, et al. The oral and gut microbiome in rheumatoid arthritis patients: a systematic review. Rheumatology. 2021; 60:1054–1066.

[123]

Bergot AS, Giri R, Thomas R. The microbiome and rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2019; 33:101497–101512.

[124]

Kitamura K, Shionoya H, Suzuki S, Fukai R, Uda S, Abe C, et al. Oral and intestinal bacterial substances associated with disease activities in patients with rheumatoid arthritis: a cross-sectional clinical study. J Immunol Res. 2022; 2022:6839356.

[125]

Gabarrini G, de Smit M, Westra J, Brouwer E, Vissink A, Zhou K, et al. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Sci Rep. 2015; 5:13936–13944.

[126]

Sato K, Takahashi N, Kato T, Matsuda Y, Yokoji M, Yamada M, et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci Rep. 2017; 7:6955–6968.

[127]

Suwannalai P, Trouw LA, Toes REM, Huizinga TWJ. Anti-citrullinated protein antibodies (ACPA) in early rheumatoid arthritis. Mod Rheumatol. 2012; 22:15–20.

[128]

Lin D, Yang L, Wen L, Lu H, Chen Q, Wang Z. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol. 2021; 14:1247–1258.

[129]

Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, et al. Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis. 2019; 38:2005–2019.

[130]

Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. TIM. 2018; 26:229–242.

[131]

Conrads G, Westenberger J, Lürkens M, Abdelbary MMH. Isolation and bacteriocin-related typing of Streptococcus dentisani. Front Cell Infect Microbiol. 2019; 9:110–121.

[132]

Walsh T, Worthington HV, Glenny AM, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev. 2019; 3: CD007868–CD008113.

[133]

Gambin DJ, Vitali FC, De Carli JP, Mazzon RR, Gomes BPFA, Duque TM, et al. Prevalence of red and Orange microbial complexes in endodontic-periodontal lesions: a systematic review and meta-analysis. Clin Oral Investig. 2021; 25:6533–6546.

[134]

Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000. 2021; 86:57–78.

[135]

Rajagopala SV, Vashee S, Oldfield LM, Suzuki Y, Venter JC, Telenti A, et al. The human microbiome and cancer. Cancer Prev Res. 2017; 10:226–234.

[136]

Emfietzoglou R, Spyrou N, Mantzoros CS, Dalamaga M. Could the endocrine disruptor bisphenol—a be implicated in the pathogenesis of oral and oropharyngeal cancer? Metabolic considerations and future directions. Metabolism. 2019; 91:61–69.

[137]

Iyengar NM, Kochhar A, Morris PG, Morris LG, Zhou XK, Ghossein RA, et al. Impact of obesity on the survival of patients with early-stage squamous cell carcinoma of the oral tongue. Cancer. 2014; 120:983–991.

[138]

Sastrowijoto SH, van der Velden U, van Steenbergen TJM, Hillemans P, Hart AAM, de Graaff J, et al. Improved metabolic control, clinical periodontal status and subgingival microbiology in insulin-dependent diabetes mellitus. A prospective study. J Clin Periodontol. 1990; 17:233–242.

[139]

Oliveira FAF, Forte CPF, Silva PGB, Lopes CB, Montenegro RC, Santos ÂKCR, et al. Molecular analysis of oral bacteria in heart valve of patients with cardiovascular disease by real-time polymerase chain reaction. Medicine. 2015; 94: e2067–e2072.

[140]

Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015; 21:895–905.

[141]

Zeng XT, Tu ML, Liu DY, Zheng D, Zhang J, Leng W. Periodontal disease and risk of chronic obstructive pulmonary disease: a meta-analysis of observational studies. PLoS One. 2012; 7: e46508–e46517.

[142]

Heron SE, Elahi S. HIV infection and compromised mucosal immunity: oral manifestations and systemic inflammation. Front Immunol. 2017; 8:241–259.

[143]

Talmor-Barkan Y, Bar N, Shaul AA, Shahaf N, Godneva A, Bussi Y, et al. Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med. 2022; 28:295–302.

[144]

McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry. 2022; 27:1920–1935.

[145]

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019; 20:257–270.

[146]

Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021; 10: e65088–e65130.

[147]

Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016; 13:435–438.

[148]

Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017; 27:626–638.

[149]

Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat Biotechnol. 2021; 39:727–736.

[150]

Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat Rev Microbiol. 2016; 14:93–105.

[151]

Guo L, McLean JS, Yang Y, Eckert R, Kaplan CW, Kyme P, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci USA. 2015; 112:7569–7574.

[152]

Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010; 465:346–349.

[153]

Fukui M, Asakuma H, Horiuchi H, Takii H, Yoshioka M, Hinode D. Oral care tablet containing kiwifruit powder affects tongue coating microbiome. Clin Exp Dent Res. 2022; 8:721–728.

[154]

Yu G, Phillips S, Gail MH, Goedert JJ, Humphrys MS, Ravel J, et al. The effect of cigarette smoking on the oral and nasal microbiota. Microbiome. 2017; 5:3–9.

[155]

Dashper SG, Mitchell HL, Lê Cao KA, Carpenter L, Gussy MG, Calache H, et al. Temporal development of the oral microbiome and prediction of early childhood caries. Sci Rep. 2019; 9:19732–19744.

[156]

Sparks Stein P, Steffen MJ, Smith C, Jicha G, Ebersole JL, Abner E, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimer’s Dement. 2012; 8:196–203.

[157]

Freire M, Nelson KE, Edlund A. The oral host-microbial interactome: an ecological chronometer of health? TIM. 2021; 29:551–561.

[158]

Lundberg JO, Carlström M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 2018; 28:9–22.

[159]

Vanhatalo A, Blackwell JR, L’Heureux JE, Williams DW, Smith A, van der Giezen M, et al. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic Biol Med. 2018; 124:21–30.

[160]

Bryan NS, Tribble G, Angelov N. Oral microbiome and nitric oxide: the missing link in the management of blood pressure. Curr Hypertens Rep. 2017; 19:33–41.

[161]

Jørgensen MR, Kragelund C, Jensen , Keller MK, Twetman S. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J Oral Microbiol. 2017; 9:1274582–1274591.

[162]

Rungsri P, Akkarachaneeyakorn N, Wongsuwanlert M, Piwat S, Nantarakchaikul P, Teanpaisan R. Effect of fermented milk containing Lactobacillus rhamnosus SD11 on oral microbiota of healthy volunteers: a randomized clinical trial. J Dairy Sci. 2017; 100:7780–7787.

[163]

Nguyen T, Brody H, Lin GH, Rangé H, Kuraji R, Ye C, et al. Probiotics, including nisin-based probiotics, improve clinical and microbial outcomes relevant to oral and systemic diseases. Periodontol 2000. 2020; 82:173–185.

[164]

Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019; 16:605–616.

[165]

Seminario-Amez M, Lopez-Lopez J, Estrugo-Devesa A, Ayuso-Montero R, Jane-Salas E. Probiotics and oral health: a systematic review. Med Oral Patol Oral Cir Bucal. 2017; 22: e282–e288.

[166]

Ho H, Chun Y, Jeong S, Jumreornvong O, Sicherer SH, Bunyavanich S. Multidimensional study of the oral microbiome, metabolite, and immunologic environment in peanut allergy. J Allergy Clin Immunol. 2021; 148:627–632.

[167]

Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014; 111:13145–13150.

[168]

Lin B, Zhao F, Liu Y, Wu X, Feng J, Jin X, et al. Randomized clinical trial: probiotics alleviated oral-gut microbiota dysbiosis and thyroid hormone withdrawal-related complications in thyroid cancer patients before radioiodine therapy following thyroidectomy. Front Endocrinol. 2022; 13:834674–834689.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/