Ectomycorrhizal fungi: Potential guardians of terrestrial ecosystems

Wenchen Song

mLife ›› 2024, Vol. 3 ›› Issue (3) : 387 -390.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (3) : 387 -390. DOI: 10.1002/mlf2.12127
OPINION

Ectomycorrhizal fungi: Potential guardians of terrestrial ecosystems

Author information +
History +
PDF

Cite this article

Download citation ▾
Wenchen Song. Ectomycorrhizal fungi: Potential guardians of terrestrial ecosystems. mLife, 2024, 3(3): 387-390 DOI:10.1002/mlf2.12127

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tanentzap AJ, Kolmakova O. Global change ecology: science to heal a damaged planet. PLoS Biol. 2023; 21:e3002455.

[2]

Jeswani HK, Saharudin DM, Azapagic A. Environmental sustainability of negative emissions technologies: a review. Sustain Prod Consum. 2022; 33:608–635.

[3]

Rammig A, Mahecha MD. Ecosystem responses to climate extremes. Nature. 2015; 527:315–316.

[4]

Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience. 2022; 25:104559.

[5]

Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 2022; 235:2158–2175.

[6]

Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates. Science. 2023; 380:835–840.

[7]

Xue He He, Wang W, Wang X, Zhang B, Shi F, Kurakov AV, et al. The potential of mycorrhizal fungi to increase terrestrial ecosystem carbon sink: a review. Eurasian Soil Sci. 2023; 56:1724–1738.

[8]

Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol. 2020; 18:649–660.

[9]

Janowski D, Leski T. Factors in the distribution of mycorrhizal and soil fungi. Diversity. 2022; 14:1122.

[10]

Soudzilovskaia NA, van Bodegom PM, Terrer C, Zelfde M, McCallum I, Luke McCormack M, et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun. 2019; 10:5077.

[11]

Barceló M, van Bodegom PM, Soudzilovskaia NA. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J Ecol. 2019; 107:2564–2573.

[12]

Chen L, Swenson NG, Ji N, Mi X, Ren H, Guo L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019; 366:124–128.

[13]

Song W, Zhou Y. Linking leaf δ15N and δ13C with soil fungal biodiversity, ectomycorrhizal and plant pathogenic abundance in forest ecosystems of China. Catena. 2021; 200:105176.

[14]

Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020; 367:eaba1223.

[15]

Xiao Y, Liu C, Hu N, Wang B, Zheng K, Zhao Z, et al. Contributions of ectomycorrhizal fungi in a reclaimed poplar forest (Populus yunnanensis) in an abandoned metal mine tailings pond, southwest China. J Hazard Mater. 2023; 448:130962.

[16]

Cheng F, Huang X, Qin Q, Chen Z, Li F, Song W. The effect of aboveground long-term low-dose ionizing radiation on soil microbial diversity and structure. Front Ecol Evol. 2023; 11:1184582.

[17]

Zeng G, Wen Y, Luo C, Zhang Y, Li F, Xiong C. Plant–microorganism–soil interaction under long-term low-dose ionizing radiation. Front Microbiol. 2024; 14:1331477.

[18]

Zheng H, Phillips RP, Rousk J, Yue K, Schmidt IK, Peng Y, et al. Imprint of tree species mycorrhizal association on microbial-mediated enzyme activity and stoichiometry. Funct Ecol. 2023; 37:1366–1376.

[19]

Zheng L, Song W. Phosphorus limitation of trees influences forest soil fungal diversity in China. Forests. 2022; 13:223.

[20]

Guo L, Deng M, Li X, Schmid B, Huang J, Wu Y, et al. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol Lett. 2024; 27:e14330.

[21]

Wu T, Tissue DT, Su W, Li X, Yang S, Liu X, et al. Long-term field translocation differentially affects arbuscular mycorrhizal and ectomycorrhizal trees in a sub-tropical forest. Agricult Forest Meterol. 2023; 342:109724.

[22]

Song W. Negative linear or unimodal: why forest soil fungal latitudinal diversity differs across China. Microbiol Spectr. 2023; 11: e02515–e02522.

[23]

Mayer M, Matthews B, Sandén H, Katzensteiner K, Hagedorn F, Gorfer M, et al. Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest. New Phytol. 2023; 239:325–339.

[24]

Liu B, Fan X, Meng D, Liu Z, Gao D, Chang Q, et al. Ectomycorrhizal trees rely on nitrogen resorption less than arbuscular mycorrhizal trees globally. Ecol Lett. 2024; 27:e14346.

[25]

Liang C. Soil microbial carbon pump: mechanism and appraisal. Soil Ecol Lett. 2020; 2:241–254.

[26]

Terrer C, Vicca S, Hungate BA, Phillips RP, Reich PB, Franklin O, et al. Response to comment on “mycorrhizal association as a primary control of the CO2 fertilization effect”. Science. 2017; 355:358.

[27]

Anthony MA, Crowther TW, Van Der Linde S, Suz LM, Bidartondo MI, Cox F, et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 2022; 16:1327–1336.

[28]

Mao Z, van der Plas F, Corrales A, Anderson-Teixeira KJ, Bourg NA, Chu C, et al. Scale-dependent diversity–biomass relationships can be driven by tree mycorrhizal association and soil fertility. Ecol Monograph. 2023; 93:e1568.

[29]

Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science. 2016; 353:72–74.

[30]

Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GDA, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019; 569:404–408.

[31]

Gomes SIF, van Bodegom PM, Merckx VSFT, Soudzilovskaia NA. Global distribution patterns of mycoheterotrophy. Global Ecol Biogeogr. 2019; 28:1133–1145.

[32]

Bennett AE, Classen AT. Climate change influences mycorrhizal fungal–plant interactions, but conclusions are limited by geographical study bias. Ecology. 2020; 101:e02978.

[33]

Hannula SE, Morriën E, de Hollander M, van der Putten WH, van Veen JA, De Boer W. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J. 2017; 11:2294–2304.

[34]

Song W, Liu Y. Microbial taxa and soil organic carbon accumulation driven by tree roots. Forests. 2018; 9:333.

[35]

Thomas PW, Jump AS. Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts. Proc Natl Acad Sci USA. 2023; 120:e2220079120.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/