Heme homeostasis and its regulation by hemoproteins in bacteria

Yingxi Li , Sirui Han , Haichun Gao

mLife ›› 2024, Vol. 3 ›› Issue (3) : 327 -342.

PDF
mLife ›› 2024, Vol. 3 ›› Issue (3) : 327 -342. DOI: 10.1002/mlf2.12120
REVIEW

Heme homeostasis and its regulation by hemoproteins in bacteria

Author information +
History +
PDF

Abstract

Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.

Keywords

heme / heme acquisition and utilization / heme export / heme homeostasis / hemoprotein

Cite this article

Download citation ▾
Yingxi Li, Sirui Han, Haichun Gao. Heme homeostasis and its regulation by hemoproteins in bacteria. mLife, 2024, 3(3): 327-342 DOI:10.1002/mlf2.12120

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Battersby AR. Tetrapyrroles: the pigments of life. Nat Prod Rep. 2000; 17:507–526.

[2]

Bryant DA, Hunter CN, Warren MJ. Biosynthesis of the modified tetrapyrroles—the pigments of life. J Biol Chem. 2020; 295:6888–6925.

[3]

Layer G. Heme biosynthesis in prokaryotes. Biochim Biophys Acta Mol Cell Res. 2021; 1868:118861.

[4]

Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O’Brian MR, et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol Mol Biol Rev. 2017; 81:e0004816.

[5]

Hederstedt L. Heme A biosynthesis. Biochim Biophys Acta Bioenerg. 2012; 1817:920–927.

[6]

Rivett ED, Heo L, Feig M, Hegg EL. Biosynthesis and trafficking of heme o and heme a: new structural insights and their implications for reaction mechanisms and prenylated heme transfer. Crit Rev Biochem Mol Biol. 2021; 56:640–668.

[7]

Bertini I, Cavallaro G, Rosato A. Cytochrome c: occurrence and functions. Chem Rev. 2006; 106:90–115.

[8]

Timkovich R, Cork MS, Gennis RB, Johnson PY. Proposed structure of heme d, a prosthetic group of bacterial terminal oxidases. J Am Chem Soc. 1985; 107:6069–6075.

[9]

Poulos TL. Heme enzyme structure and function. Chem Rev. 2014; 114:3919–3962.

[10]

Kranz RG, Richard-Fogal C, Taylor J-S, Frawley ER. Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev. 2009; 73:510–528.

[11]

Hoy JA, Kundu S, Trent, III JT, Ramaswamy S, Hargrove MS. The crystal structure of Synechocystis hemoglobin with a covalent heme linkage*. J Biol Chem. 2004; 279:16535–16542.

[12]

Pearson AR, Elmore BO, Yang C, Ferrara JD, Hooper AB, Wilmot CM. The crystal structure of cytochrome P460 of Nitrosomonas europaea reveals a novel cytochrome fold and heme–protein cross-link. Biochemistry. 2007; 46:8340–8349.

[13]

Wang W, Wang J, Feng X, Gao H. A common target of nitrite and nitric oxide for respiration inhibition in bacteria. Int J Mol Sci. 2022; 23:13841.

[14]

Gallio AE, Fung SS-P, Cammack-Najera A, Hudson AJ, Raven EL. Understanding the logistics for the distribution of heme in cells. JACS Au. 2021; 1:1541–1555.

[15]

Anzaldi LL, Skaar EP. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun. 2010; 78:4977–4989.

[16]

Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD. Heme: modulator of plasma systems in hemolytic diseases. Trends Mol Med. 2016; 22:200–213.

[17]

Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood. 2022; 140:1837–1844.

[18]

Choby JE, Skaar EP. Heme synthesis and acquisition in bacterial pathogens. J Mol Biol. 2016; 428:3408–3428.

[19]

Nishinaga M, Sugimoto H, Nishitani Y, Nagai S, Nagatoishi S, Muraki N, et al. Heme controls the structural rearrangement of its sensor protein mediating the hemolytic bacterial survival. Commun Biol. 2021; 4:467.

[20]

Wang M, Wang Y, Wang M, Liu M, Cheng A. Heme acquisition and tolerance in Gram-positive model bacteria: an orchestrated balance. Heliyon. 2023; 9:e18233.

[21]

Yu F, Wang Z, Zhang Z, Zhou J, Li J, Chen J, et al. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Crit Rev Biotechnol. 2024; 16:1–17.

[22]

Liu G, Sil D, Maio N, Tong W-H, Bollinger JM, Krebs C, et al. Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase. Nat Commun. 2020; 11:6310.

[23]

Gibson KD, Laver WG, Neuberger A. Initial stages in the biosynthesis of porphyrins. 2. The formation of δ-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J. 1958; 70:71–81.

[24]

Kikuchi G, Kumar A, Talmage P, Shemin D. The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem. 1958; 233:1214–1219.

[25]

Huang D-D, Wang W-Y, Gough SP, Kannangara CG. δ-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science. 1984; 225:1482–1484.

[26]

Zhao XR, Choi KR, Lee SY. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat Catalysis. 2018; 1:720–728.

[27]

Pu W, Chen J, Zhou Y, Qiu H, Shi T, Zhou W, et al. Systems metabolic engineering of Escherichia coli for hyper-production of 5 aminolevulinic acid. Biotechnol Biofuels Bioprod. 2023; 16:31.

[28]

Tan Z, Zhao J, Chen J, Rao D, Zhou W, Chen N, et al. Enhancing thermostability and removing hemin inhibition of Rhodopseudomonas palustris 5-aminolevulinic acid synthase by computer-aided rational design. Biotechnol Lett. 2019; 41:181–191.

[29]

Dailey HA, Gerdes S, Dailey TA, Burch JS, Phillips JD. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc Natl Acad Sci USA. 2015; 112:2210–2215.

[30]

Bali S, Lawrence AD, Lobo SA, Saraiva LM, Golding BT, Palmer DJ, et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc Natl Acad Sci USA. 2011; 108:18260–18265.

[31]

Gruss A, Borezée-Durant E, Lechardeur D. Chapter three-environmental heme utilization by heme-auxotrophic bacteria. In: RK Poole, editor. Adv Microb Physiol. Academic Press; 2012. p. 69–124.

[32]

Rollat-Farnier PA, Santos-Garcia D, Rao Q, Sagot MF, Silva FJ, Henri H, et al. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Genome Biol Evol. 2015; 7:839–855.

[33]

Kim S, Kang I, Lee J-W, Jeon CO, Giovannoni SJ, Cho J-C. Heme auxotrophy in abundant aquatic microbial lineages. Proc Natl Acad Sci USA. 2021; 118:e2102750118.

[34]

Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochim Biophys Acta Biomembranes. 2008; 1778:1781–1804.

[35]

Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, et al. Structural insight into the role of the Ton complex in energy transduction. Nature. 2016; 538:60–65.

[36]

Mouriño S, Wilks A. Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol. 2021; 79:89–132.

[37]

Torres AG, Payne SM. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol. 1997; 23:825–833.

[38]

Hagan EC, Mobley HLT. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol. 2009; 71:79–91.

[39]

Smith AD, Wilks A. Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J Biol Chem. 2015; 290:7756–7766.

[40]

Dong Z, Guo S, Fu H, Gao H. Investigation of a spontaneous mutant reveals novel features of iron uptake in Shewanella oneidensis. Sci Rep. 2017; 7:11788.

[41]

Liu L, Li S, Wang S, Dong Z, Gao H. Complex iron uptake by the putrebactin-mediated and Feo systems in Shewanella oneidensis. Appl Environ Microbiol. 2018; 84:e01752-18.

[42]

Smith AD, Modi AR, Sun S, Dawson JH, Wilks A. Spectroscopic determination of distinct heme ligands in outer-membrane receptors PhuR and HasR of Pseudomonas aeruginosa. Biochemistry. 2015; 54:2601–2612.

[43]

Létoffé S, Ghigo JM, Wandersman C. Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci USA. 1994; 91:9876–9880.

[44]

Arnoux P, Haser R, Izadi N, Lecroisey A, Delepierre M, Wandersman C, et al. The crystal structure of HasA, a hemophore secreted by Serratia marcescens. Nat Struct Biol. 1999; 6:516–520.

[45]

Deniau C, Gilli R, Izadi-Pruneyre N, Létoffé S, Delepierre M, Wandersman C, et al. Thermodynamics of heme binding to the HasA (SM) hemophore: effect of mutations at three key residues for heme uptake. Biochemistry. 2003; 42:10627–10633.

[46]

Dent AT, Mouriño S, Huang W, Wilks A. Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J Biol Chem. 2019; 294:2771–5555.

[47]

Ochsner UA, Johnson Z, Vasil ML. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology. 2000; 146:185–198.

[48]

Biville F, Cwerman H, Létoffé S, Rossi MS, Drouet V, Ghigo JM, et al. Haemophore-mediated signalling in Serratia marcescens: a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition. Mol Microbiol. 2004; 53:1267–1277.

[49]

Rossi M-S, Paquelin A, Ghigo JM, Wandersman C. Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Mol Microbiol. 2003; 48:1467–1480.

[50]

Wandersman C, Delepelaire P. Haemophore functions revisited. Mol Microbiol. 2012; 85:618–631.

[51]

Zambolin S, Clantin B, Chami M, Hoos S, Haouz A, Villeret V, et al. Structural basis for haem piracy from host haemopexin by Haemophilus influenzae. Nat Commun. 2016; 7:11590.

[52]

Fournier C, Smith A, Delepelaire P. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol. 2011; 80:133–148.

[53]

Wójtowicz H, Guevara T, Tallant C, Olczak M, Sroka A, Potempa J, et al. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis. PLoS Pathog. 2009; 5:e1000419.

[54]

Smalley JW, Byrne DP, Birss AJ, Wojtowicz H, Sroka A, Potempa J, et al. HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis. PLoS One. 2011; 6:e17182.

[55]

Létoffé S, Ghigo JM, Wandersman C. Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol. 1994; 176:5372–5377.

[56]

Jacob-Dubuisson F, Locht C, Antoine R. Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol. 2001; 40:306–313.

[57]

Bateman TJ, Shah M, Ho TP, Shin HE, Pan C, Harris G, et al. A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii. Nat Commun. 2021; 12:6270.

[58]

Tong Y, Guo M. Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa. J Biol Inorg Chem. 2007; 12:735–750.

[59]

Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj. 2017; 1861:683–697.

[60]

Ho WW, Li H, Eakanunkul S, Tong Y, Wilks A, Guo M, et al. Holo- and apo-bound structures of bacterial periplasmic heme-binding proteins. J Biol Chem. 2007; 282:35796–35802.

[61]

Woo JS, Zeltina A, Goetz BA, Locher KP. X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol. 2012; 19:1310–1315.

[62]

Naoe Y, Nakamura N, Doi A, Sawabe M, Nakamura H, Shiro Y, et al. Crystal structure of bacterial haem importer complex in the inward-facing conformation. Nat Commun. 2016; 7:13411.

[63]

Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Structure and dynamics of Type III periplasmic proteins VcFhuD and VcHutB reveal molecular basis of their distinctive ligand binding properties. Sci Rep. 2017; 7:42812.

[64]

Saha I, Chakraborty S, Agarwal S, Mukherjee P, Ghosh B, Dasgupta J. Mechanistic insights of ABC importer HutCD involved in heme internalization by Vibrio cholerae. Sci Rep. 2022; 12:7152.

[65]

Létoffé S, Delepelaire P, Wandersman C. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide-binding proteins. Proc Natl Acad Sci USA. 2006; 103:12891–12896.

[66]

Mitra A, Ko Y-H, Cingolani G, Niederweis M. Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nat Commun. 2019; 10:4260.

[67]

Rodríguez-Arce I, Al-Jubair T, Euba B, Fernández-Calvet A, Gil-Campillo C, Martí S, et al. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence. 2019; 10:315–333.

[68]

Tanaka KJ, Pinkett HW. Oligopeptide-binding protein from nontypeable Haemophilus influenzae has ligand-specific sites to accommodate peptides and heme in the binding pocket. J Biol Chem. 2019; 294:1070–1082.

[69]

Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P, et al. Staphylococcus aureus targets the duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe. 2015; 18:363–370.

[70]

Conroy BS, Grigg JC, Kolesnikov M, Morales LD, Murphy MEP. Staphylococcus aureus heme and siderophore-iron acquisition pathways. BioMetals. 2019; 32:409–424.

[71]

Sharp KH, Schneider S, Cockayne A, Paoli M. Crystal structure of the heme-IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus. J Biol Chem. 2007; 282:10625–10631.

[72]

Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol. 2007; 63:139–149.

[73]

Ellis-Guardiola K, Mahoney BJ, Clubb RT. NEAr Transporter (NEAT) domains: unique surface displayed heme chaperones that enable Gram-positive bacteria to capture heme-iron from hemoglobin. Front Microbiol. 2021; 11:607679.

[74]

Adolf LA, Müller-Jochim A, Kricks L, Puls JS, Lopez D, Grein F, et al. Functional membrane microdomains and the hydroxamate siderophore transporter ATPase FhuC govern Isd-dependent heme acquisition in Staphylococcus aureus. eLife. 2023; 12:85304.

[75]

Schmitt MP. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol. 1997; 179:838–845.

[76]

Trost E, Blom J, de Castro Soares S, Huang IH, Al-Dilaimi A, Schröder J, et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol. 2012; 194:3199–3215.

[77]

Schmitt MP. Iron acquisition and iron-dependent gene expression in Corynebacterium diphtheriae. In: A Burkovski, editor. Corynebacterium diphtheriae and related toxigenic species: genomics, pathogenicity and applications. Dordrecht, Netherlands: Springer; 2014. p. 95–121.

[78]

Allen CE, Schmitt MP. Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J Bacteriol. 2015; 197:553–562.

[79]

Allen CE, Schmitt MP. Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol. 2011; 193:5374–5385.

[80]

Lyman LR, Peng ED, Schmitt MP. The Corynebacterium diphtheriae HbpA hemoglobin-binding protein contains a domain that is critical for hemoprotein binding, cellular localization, and function. J Bacteriol. 2021; 203:e0019621.

[81]

Wilks A, Heinzl G. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys. 2014; 544:87–95.

[82]

Lyles KV, Eichenbaum Z. From host heme to iron: the expanding spectrum of heme degrading enzymes used by pathogenic bacteria. Front Cell Infect Microbiol. 2018; 8:198.

[83]

Li S, Isiorho EA, Owens VL, Donnan PH, Odili CL, Mansoorabadi SO. A noncanonical heme oxygenase specific for the degradation of c-type heme. J Biol Chem. 2021; 296:100666.

[84]

Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968; 61:748–755.

[85]

Zhu W, Wilks A, Stojiljkovic I. Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol. 2000; 182:6783–6790.

[86]

Wu R, Skaar EP, Zhang R, Joachimiak G, Gornicki P, Schneewind O, et al. Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J Biol Chem. 2005; 280:2840–2846.

[87]

Chao A, Burley KH, Sieminski PJ, de Miranda R, Chen X, Mobley DL, et al. Structure of a Mycobacterium tuberculosis heme-degrading protein, MhuD, variant in complex with its product. Biochemistry. 2019; 58:4610–4620.

[88]

Schneider S, Sharp KH, Barker PD, Paoli M. An induced fit conformational change underlies the binding mechanism of the heme transport proteobacteria-protein HemS. J Biol Chem. 2006; 281:32606–32610.

[89]

Onzuka M, Sekine Y, Uchida T, Ishimori K, Ozaki S. HmuS from Yersinia pseudotuberculosis is a non-canonical heme-degrading enzyme to acquire iron from heme. Biochim Biophys Acta Gen Subj. 2017; 1861:1870–1878.

[90]

Hu Y, Jiang F, Guo Y, Shen X, Zhang Y, Zhang R, et al. Crystal structure of HugZ, a novel heme oxygenase from Helicobacter pylori. J Biol Chem. 2011; 286:1537–1544.

[91]

Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I. Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol. 2001; 183:6394–6403.

[92]

Ouellet YH, Ndiaye CT, Gagné SM, Sebilo A, Suits MDL, Jubinville É, et al. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: release of hematinic acid, tripyrrole and Fe(III). J Inorg Biochem. 2016; 154:103–113.

[93]

Ran Z, Du Z, Miao G, Zheng M, Luo L, Pang X, et al. Identification of a c-type heme oxygenase and its function during acclimation of cyanobacteria to nitrogen fluctuations. Commun Biol. 2023; 6:944.

[94]

Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a unique heme-binding protein, enhances group A Streptococcus fitness during mucosal colonization. Front Cell Infect Microbiol. 2022; 12:867963.

[95]

Uchida T, Sekine Y, Matsui T, Ikeda-Saito M, Ishimori K. A heme degradation enzyme, HutZ, from Vibrio cholerae. Chem Commun. 2012; 48:6741–6743.

[96]

Ueki T. Cytochromes in extracellular electron transfer in Geobacter. Appl Environ Microbiol. 2021; 87: e03109–e03120.

[97]

Zhou G, Yin J, Chen H, Hua Y, Sun L, Gao H. Combined effect of loss of the caa3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments. ISME J. 2013; 7:1752–1763.

[98]

Guo M, Gao M, Liu J, Xu N, Wang H. Bacterioferritin nanocage: structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotech Adv. 2022; 61:108057.

[99]

Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A, Haque MM, et al. Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem. 2018; 293:14557–14568.

[100]

Galmozzi A, Kok BP, Kim AS, Montenegro-Burke JR, Lee JY, Spreafico R, et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature. 2019; 576:138–142.

[101]

Dai Y, Sweeny EA, Schlanger S, Ghosh A, Stuehr DJ. GAPDH delivers heme to soluble guanylyl cyclase. J Biol Chem. 2020; 295:8145–8154.

[102]

Martinez-Guzman O, Willoughby MM, Saini A, Dietz JV, Bohovych I, Medlock AE, et al. Mitochondrial-nuclear heme trafficking in budding yeast is regulated by GTPases that control mitochondrial dynamics and ER contact sites. J Cell Sci. 2020; 133:jcs237917.

[103]

Chambers IG, Willoughby MM, Hamza I, Reddi AR. One ring to bring them all and in the darkness bind them: the trafficking of heme without deliverers. Biochim Biophys Acta Mol Cell Res. 2021; 1868:118881.

[104]

Leung GC-H, Fung SS-P, Gallio AE, Blore R, Alibhai D, Raven EL, et al. Unravelling the mechanisms controlling heme supply and demand. Proc Natl Acad Sci USA. 2021; 118:e2104008118.

[105]

Abicht HK, Martinez J, Layer G, Jahn D, Solioz M. Lactococcus lactis HemW (HemN) is a haem-binding protein with a putative role in haem trafficking. Biochem J. 2012; 442:335–343.

[106]

Haskamp V, Karrie S, Mingers T, Barthels S, Alberge F, Magalon A, et al. The radical SAM protein HemW is a heme chaperone. J Biol Chem. 2018; 293:2558–2572.

[107]

Flint A, Stintzi A. Cj1386, an atypical hemin-binding protein, mediates hemin trafficking to KatA in Campylobacter jejuni. J Bacteriol. 2015; 197:1002–1011.

[108]

Flint A, Sun Y-Q, Stintzi A. Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni. J Bacteriol. 2012; 194:334–345.

[109]

Zamarreño Beas J, Videira MAM, Karavaeva V, Lourenço FM, Almeida MR, Sousa F, et al. In Campylobacter jejuni, a new type of chaperone receives heme from ferrochelatase. Front Genet. 2023; 14:1199357.

[110]

Booker SJ, Lloyd CT. Twenty years of radical SAM! The genesis of the superfamily. ACS Bio Med Chem Au. 2022; 2:538–547.

[111]

Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature. 2006; 439:604–607.

[112]

Sun F, Zhao Z, Willoughby MM, Shen S, Zhou Y, Shao Y, et al. HRG-9 homologues regulate haem trafficking from haem-enriched compartments. Nature. 2022; 610:768–774.

[113]

Han S, Guo K, Wang W, Tao YJ, Gao H. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes c. mBio. 2023; 14:e0132023.

[114]

Jiang Y, Dong Y, Luo Q, Li N, Wu G, Gao H. Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis. J Bacteriol. 2014; 196:445–458.

[115]

Wan F, Kong L, Gao H. Defining the binding determinants of Shewanella oneidensis OxyR: implications for the link between the contracted OxyR regulon and adaptation. J Biol Chem. 2018; 293:4085–4096.

[116]

Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a target for therapeutic interventions. Front Pharmacol. 2017; 8:146.

[117]

Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems—heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev. 2022; 46:fuac002.

[118]

Knippel RJ, Zackular JP, Moore JL, Celis AI, Weiss A, Washington MK, et al. Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection. PLoS Pathog. 2018; 14:e1007486.

[119]

Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, et al. A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe. 2007; 1:109–119.

[120]

Bibb LA, Schmitt MP. The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae. J Bacteriol. 2010; 192:4606–4617.

[121]

Fernandez A, Lechardeur D, Derré-Bobillot A, Couvé E, Gaudu P, Gruss A. Two coregulated efflux transporters modulate intracellular heme and protoporphyrin IX availability in Streptococcus agalactiae. PLoS Pathog. 2010; 6:e1000860.

[122]

Saillant V, Lipuma D, Ostyn E, Joubert L, Boussac A, Guerin H, et al. A novel Enterococcus faecalis heme transport regulator (FhtR) senses host heme to control its intracellular homeostasis. mBio. 2021; 12:e03392-20.

[123]

Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005; 157:175–188.

[124]

Nakamura H, Hisano T, Rahman MM, Tosha T, Shirouzu M, Shiro Y. Structural basis for heme detoxification by an ATP-binding cassette–type efflux pump in Gram-positive pathogenic bacteria. Proc Natl Acad Sci USA. 2022; 119:e2123385119.

[125]

Joubert L, Derré-Bobillot A, Gaudu P, Gruss A, Lechardeur D. HrtBA and menaquinones control haem homeostasis in Lactococcus lactis. Mol Microbiol. 2014; 93:823–833.

[126]

Poole RK, Cozens AG, Shepherd M. The CydDC family of transporters. Res Microbiol. 2019; 170:407–416.

[127]

Wu D, Mehdipour AR, Finke F, Goojani HG, Groh RR, Grund TN, et al. Dissecting the conformational complexity and mechanism of a bacterial heme transporter. Nat Chem Biol. 2023; 19:992–1003.

[128]

Fu H, Chen H, Wang J, Zhou G, Zhang H, Zhang L, et al. Crp-dependent cytochrome bd oxidase confers nitrite resistance to Shewanella oneidensis. Environ Microbiol. 2013; 15:2198–2212.

[129]

Chen H, Luo Q, Yin J, Gao T, Gao H. Evidence for the requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis. Biochim Biophys Acta Gen Subj. 2015; 1850:318–328.

[130]

Chen J, Xie P, Huang Y, Gao H. Complex interplay of heme-copper oxidases with nitrite and nitric oxide. Int J Mol Sci. 2022; 23:979.

[131]

Frawley ER, Kranz RG. CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc Natl Acad Sci USA. 2009; 106:10201–10206.

[132]

Li J, Zheng W, Gu M, Han L, Luo Y, Yu K, et al. Structures of the CcmABCD heme release complex at multiple states. Nat Commun. 2022; 13:6422.

[133]

Sutherland MC, Tran NL, Tillman DE, Jarodsky JM, Yuan J, Kranz RG. Structure-function analysis of the bifunctional CcsBA heme exporter and cytochrome c synthetase. mBio. 2018; 9:e02134-18.

[134]

Verissimo AF, Daldal F. Cytochrome c biogenesis system I: an intricate process catalyzed by a maturase supercomplex? Biochim Biophys Acta Bioenerg. 2014; 1837:989–998.

[135]

Fu H, Jin M, Wan F, Gao H. Shewanella oneidensis cytochrome c maturation component CcmI is essential for heme attachment at the non-canonical motif of nitrite reductase NrfA. Mol Microbiol. 2015; 95:410–425.

[136]

Lee D, Pervushin K, Bischof D, Braun M, Thöny-Meyer L. Unusual heme-histidine bond in the active site of a chaperone. J Am Chem Soc. 2005; 127:3716–3717.

[137]

Harvat EM, Redfield C, Stevens JM, Ferguson SJ. Probing the heme-binding site of the cytochrome c maturation protein CcmE. Biochemistry. 2009; 48:1820–1828.

[138]

Feissner RE, Richard-Fogal CL, Frawley ER, Kranz RG. ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis. Mol Microbiol. 2006; 61:219–231.

[139]

Ilcu L, Denkhaus L, Brausemann A, Zhang L, Einsle O. Architecture of the heme-translocating CcmABCD/E complex required for cytochrome c maturation. Nat Commun. 2023; 14:5190.

[140]

Christensen O, Harvat EM, Thöny-Meyer L, Ferguson SJ, Stevens JM. Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE. FEBS J. 2007; 274:2322–2332.

[141]

Schulz H, Fabianek RA, Pellicioli EC, Hennecke H, Thöny-Meyer L. Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA. 1999; 96:6462–6467.

[142]

Mendez DL, Lowder EP, Tillman DE, Sutherland MC, Collier AL, Rau MJ, et al. Cryo-EM of CcsBA reveals the basis for cytochrome c biogenesis and heme transport. Nat Chem Biol. 2022; 18:101–108.

[143]

Lee JW, Helmann JD. Functional specialization within the Fur family of metalloregulators. BioMetals. 2007; 20:485–499.

[144]

Mancini S, Imlay JA. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress. Mol Microbiol. 2015; 96:744–763.

[145]

Qiu D, Xie M, Dai J, An W, Wei H, Tian C, et al. Differential regulation of the two ferrochelatase paralogues in Shewanella loihica PV-4 in response to environmental stresses. Appl Environ Microbiol. 2016; 82:5077–5088.

[146]

Brown AN, Anderson MT, Bachman MA, Mobley HLT. The ArcAB two-component system: function in metabolism, redox control, and infection. Microbiol Mol Biol Rev. 2022; 86: e00110–e00121.

[147]

Zamarreño Beas J, Videira MAM, Saraiva LM. Regulation of bacterial haem biosynthesis. Coord Chem Rev. 2022; 452:214286.

[148]

Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med. 2019; 133:88–100.

[149]

Rathod DC, Vaidya SM, Hopp M-T, Kühl T, Imhof D. Shapes and patterns of heme-binding motifs in mammalian heme-binding proteins. Biomolecules. 2023; 13:1031.

[150]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589.

[151]

Yang J, Sangwan I, Lindemann A, Hauser F, Hennecke H, Fischer H-M, et al. Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism. Mol Microbiol. 2006; 60:427–437.

[152]

Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, et al. The iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol. 2006; 188:733–744.

[153]

Ishikawa H, Nakagaki M, Bamba A, Uchida T, Hori H, O’Brian MR, et al. Unusual heme binding in the bacterial iron response regulator protein: spectral characterization of heme binding to the heme regulatory motif. Biochemistry. 2011; 50:1016–1022.

[154]

Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, Mury SP, et al. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol Cell Biol. 2008; 28:4697–4711.

[155]

Kitatsuji C, Izumi K, Nambu S, Kurogochi M, Uchida T, Nishimura SI, et al. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator. Sci Rep. 2016; 6:18703.

[156]

Qi Z, O’Brian MR. Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell. 2002; 9:155–162.

[157]

Nam D, Matsumoto Y, Uchida T, O’Brian MR, Ishimori K. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr). J Biol Chem. 2020; 295:11316–11325.

[158]

Lechardeur D, Cesselin B, Liebl U, Vos MH, Fernandez A, Brun C, et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis. J Biol Chem. 2012; 287:4752–4758.

[159]

Knippel RJ, Wexler AG, Miller JM, Beavers WN, Weiss A, de Crécy-Lagard V, et al. Clostridioides difficile senses and hijacks host heme for incorporation into an oxidative stress defense system. Cell Host Microbe. 2020; 28:411–421.

[160]

Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem. 2012; 287:30755–30768.

[161]

Zappa S, Bauer CE. The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in Rhodobacter capsulatus. Mol Microbiol. 2013; 90:1277–1292.

[162]

Smart JL, Bauer CE. Tetrapyrrole biosynthesis in Rhodobacter capsulatus is transcriptionally regulated by the heme-binding regulatory protein, HbrL. J Bacteriol. 2006; 188:1567–1576.

[163]

Mike LA, Choby JE, Brinkman PR, Olive LQ, Dutter BF, Ivan SJ, et al. Two-component system, cross-regulation integrates Bacillus anthracis response to heme and cell envelope stress. PLoS Pathog. 2014; 10:e1004044.

[164]

Burgos JM, Schmitt MP. The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae. J Bacteriol. 2016; 198:2419–2430.

[165]

Keppel M, Davoudi E, Gätgens C, Frunzke J. Membrane topology and heme binding of the histidine kinases HrrS and ChrS in Corynebacterium glutamicum. Front Microbiol. 2018; 9:183.

[166]

Ito Y, Nakagawa S, Komagata A, Ikeda-Saito M, Shiro Y, Nakamura H. Heme-dependent autophosphorylation of a heme sensor kinase, ChrS, from Corynebacterium diphtheriae reconstituted in proteoliposomes. FEBS Lett. 2009; 583:2244–2248.

[167]

Frunzke J, Gätgens C, Brocker M, Bott M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol. 2011; 193:1212–1221.

[168]

Heyer A, Gätgens C, Hentschel E, Kalinowski J, Bott M, Frunzke J. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology. 2012; 158:3020–3031.

[169]

Hentschel E, Mack C, Gätgens C, Bott M, Brocker M, Frunzke J. Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum. Mol Microbiol. 2014; 92:1326–1342.

[170]

Keppel M, Hünnefeld M, Filipchyk A, Viets U, Davoudi C-F, Krüger A, et al. HrrSA orchestrates a systemic response to heme and determines prioritization of terminal cytochrome oxidase expression. Nucleic Acids Res. 2020; 48:6547–6562.

[171]

de Lima VM, Batista BB, da Silva Neto JF. The regulatory protein ChuP connects heme and siderophore-mediated iron acquisition systems required for Chromobacterium violaceum virulence. Front Cell Infect Microbiol. 2022; 12:873536.

[172]

Escamilla-Hernandez R, O’Brian MR. HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum. J Bacteriol. 2012; 194:3137–3143.

[173]

Sato T, Nonoyama S, Kimura A, Nagata Y, Ohtsubo Y, Tsuda M. The small protein HemP is a transcriptional activator for the hemin uptake operon in Burkholderia multivorans ATCC 17616. Appl Environ Microbiol. 2017; 83:e00479-17.

[174]

Amarelle V, Koziol U, Fabiano E. Highly conserved nucleotide motifs present in the 5′-UTR of the heme-receptor gene shmR are required for HmuP-dependent expression of shmR in Ensifer meliloti. BioMetals. 2019; 32:273–291.

[175]

Amarelle V, Koziol U, Rosconi F, Noya F, O’Brian MR, Fabiano E. A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti. Microbiology. 2010; 156:1873–1882.

[176]

Létoffé S, Deniau C, Wolff N, Dassa E, Delepelaire P, Lecroisey A, et al. Haemophore-mediated bacterial haem transport: evidence for a common or overlapping site for haem-free and haem-loaded haemophore on its specific outer membrane receptor. Mol Microbiol. 2001; 41:439–450.

[177]

Dent AT, Brimberry M, Albert T, Lanzilotta WN, Moënne-Loccoz P, Wilks A. Axial heme coordination by the Tyr-His motif in the extracellular hemophore HasAp is critical for the release of heme to the HasR receptor of Pseudomonas aeruginosa. Biochemistry. 2021; 60:2549–2559.

[178]

Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N, Lecroisey A, Wandersman C, et al. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci USA. 2009; 106:1045–1050.

[179]

Dent AT, Wilks A. Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane receptor HasR to extracellular heme sensing and transport. J Biol Chem. 2020; 295:10456–10467.

[180]

Jepkorir G, Rodríguez JC, Rui H, Im W, Lovell S, Battaile KP, et al. Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa. J Am Chem Soc. 2010; 132:9857–9872.

[181]

Yukl ET, Jepkorir G, Alontaga AY, Pautsch L, Rodriguez JC, Rivera M, et al. Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry. 2010; 49:6646–6654.

[182]

Kumar R, Matsumura H, Lovell S, Yao H, Rodríguez JC, Battaile KP, et al. Replacing the axial ligand tyrosine 75 or its hydrogen bond partner histidine 83 minimally affects hemin acquisition by the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry. 2014; 53:2112–2125.

RIGHTS & PERMISSIONS

2024 The Author(s). mLife published by John Wiley & Sons Australia, Ltd on behalf of Institute of Microbiology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/