Artificial intelligence for perioperative risk assessment in minimally invasive cardiac surgery: current applications and future perspectives

Francesco Antonio Veneziano , Raffaella Mistrulli , Flavio Angelo Gioia , Leonardo De Luca

Mini-invasive Surgery ›› 2025, Vol. 9 ›› Issue (1) : 37

PDF
Mini-invasive Surgery ›› 2025, Vol. 9 ›› Issue (1) :37 DOI: 10.20517/2574-1225.2025.119
Review

Artificial intelligence for perioperative risk assessment in minimally invasive cardiac surgery: current applications and future perspectives

Author information +
History +
PDF

Abstract

Minimally invasive cardiac surgery (MICS) represents a significant advancement in cardiac surgical care, offering benefits such as reduced trauma, shorter hospital stays, and faster recovery. However, the complexity of perioperative management in MICS demands highly accurate risk stratification and decision-making. Artificial intelligence (AI) technologies are increasingly being integrated into perioperative workflows, providing clinicians with data-driven tools to enhance patient selection, predict complications, and optimize outcomes. This review explores current applications of AI in the perioperative assessment of patients undergoing minimally invasive cardiac procedures, with a focus on preoperative risk prediction, intraoperative monitoring, and postoperative management. It discusses the potential of AI to support precision medicine in MICS, highlights the technical and ethical challenges associated with its implementation, and outlines future directions for research and clinical integration. By bridging surgical innovation and computational intelligence, AI is poised to reshape the landscape of perioperative cardiac care.

Keywords

Artificial intelligence / cardiac surgery / minimally invasive surgery / perioperative risk / machine learning / risk stratification / surgical planning / clinical decision support

Cite this article

Download citation ▾
Francesco Antonio Veneziano, Raffaella Mistrulli, Flavio Angelo Gioia, Leonardo De Luca. Artificial intelligence for perioperative risk assessment in minimally invasive cardiac surgery: current applications and future perspectives. Mini-invasive Surgery, 2025, 9(1): 37 DOI:10.20517/2574-1225.2025.119

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Holubec T,Bonaros N.Editorial: Minimally invasive cardiac surgery: state of the art and current challenges.Front Cardiovasc Med2023;10:1286868 PMCID:PMC10565476

[2]

Ilcheva L,Tudorache I.Beyond conventional operations: embracing the era of contemporary minimally invasive cardiac surgery.J Clin Med2023;12:7210 PMCID:PMC10707549

[3]

Dieberg G,King N.Minimally invasive cardiac surgery: a systematic review and meta-analysis.Int J Cardiol2016;223:554-60

[4]

Reuthebuch O,Koechlin L.Five-year survival of patients treated with minimally invasive direct coronary artery bypass (MIDCAB) compared with the general swiss population.Thorac Cardiovasc Surg2024;72:404-12 PMCID:PMC11379533

[5]

Claessens J,Vandenbrande J.Quality of life in patients undergoing minimally invasive cardiac surgery: a systematic review.Indian J Thorac Cardiovasc Surg2023;39:367-80 PMCID:PMC10279589

[6]

Vahanian A, Beyersdorf F, Praz F, et al; ESC/EACTS Scientific Document Group. 2021 ESC/EACTS Guidelines for the management of valvular heart disease.Eur Heart J2022;43:561-632

[7]

Neumann FJ, Sousa-Uva M, Ahlsson A, et al; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization.Eur Heart J2019;40:87-165

[8]

Virani SS, Newby LK, Arnold SV, et al; Peer Review Committee Members. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management Of Patients With Chronic Coronary Disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines.Circulation2023;148:e9-119

[9]

Zhuo DX,Shah KP.MAGGIC, STS, and EuroSCORE II risk score comparison after aortic and mitral valve surgery.J Cardiothorac Vasc Anesth2021;35:1806-12 PMCID:PMC8076089

[10]

Bradbury JL,Kumarasiri M.Utility of the Euroscore II in predicting long-term outcomes in a contemporary Australian cohort with complex coronary artery disease.Am J Cardiol2025;256:18-22

[11]

Shahian DM, Blackstone EH, Edwards FH, et al; STS workforce on evidence-based surgery. Cardiac surgery risk models: a position article.Ann Thorac Surg2004;78:1868-77

[12]

Kuplay H,Baştopçu M,Er H.Performance of the EuroSCORE II and the STS score for cardiac surgery in octogenarians.Turk Gogus Kalp Damar Cerrahisi Derg2021;29:174-82 PMCID:PMC8167478

[13]

Espinoza Romero C,Octavio Kormann S.Impact of a new preoperative stratification based on cardiac structural compromise in patients with severe aortic stenosis undergoing valve replacement surgery.Diagnostics2024;14:2250 PMCID:PMC11475271

[14]

Prins C,Botes L.Cardiac surgery risk-stratification models.Cardiovasc J Afr2012;23:160-4 PMCID:PMC3721858

[15]

Gao F,Wang C.Predictive ability of European Heart Surgery Risk Assessment System II (EuroSCORE II) and the Society of Thoracic Surgeons (STS) score for in-hospital and medium-term mortality of patients undergoing coronary artery bypass grafting.Int J Gen Med2021;14:8509-19 PMCID:PMC8610380

[16]

Argus L,Ouzounian M,Grant SW.Risk prediction models for long-term survival after cardiac surgery: a systematic review.Thorac Cardiovasc Surg2024;72:29-39

[17]

Khera R,Nadkarni GN.Transforming cardiovascular care with artificial intelligence: from discovery to practice: JACC state-of-the-art review.J Am Coll Cardiol2024;84:97-114 PMCID:PMC12204085

[18]

Sulague RM,Medina JR.Artificial intelligence in cardiac surgery: a systematic review.World J Surg2024;48:2073-89

[19]

Amin A,Suyambu J.Future of artificial intelligence in surgery: a narrative review.Cureus2024;16:e51631 PMCID:PMC10839429

[20]

Hassan AM,Asaad M.Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications.Am Surg2023;89:25-30 PMCID:PMC9653510

[21]

Kokkinakis S,Lasithiotakis K.Artificial intelligence in surgical risk prediction.J Clin Med2023;12:4016 PMCID:PMC10299093

[22]

Bignami EG,Del Rio P.The role of artificial intelligence in surgical patient perioperative management.Minerva Anestesiol2021;87:817-22

[23]

Yoon HK,Jung CW.Artificial intelligence in perioperative medicine: a narrative review.Korean J Anesthesiol2022;75:202-15 PMCID:PMC9171545

[24]

Kenig N,Muntaner Vives A.Artificial intelligence in surgery: a systematic review of use and validation.J Clin Med2024;13:7108 PMCID:PMC11642125

[25]

Oei SP,Mischi M,van Sloun RJG.Artificial intelligence in clinical decision support and the prediction of adverse events.Front Digit Health2025;7:1403047 PMCID:PMC12162700

[26]

Caballero D,Pérez-Salazar MJ.Applications of artificial intelligence in minimally invasive surgery training: a scoping review.Surgeries2025;6:7

[27]

Arakaki S,Sasaki K.Artificial intelligence in minimally invasive surgery: current state and future challenges.JMA J2025;8:86-90 PMCID:PMC11799540

[28]

Venkatesan M,Ryan JR.Virtual and augmented reality for biomedical applications.Cell Rep Med2021;2:100348 PMCID:PMC8324499

[29]

Riddle EW,Narayan M.Surgical simulation: virtual reality to artificial intelligence.Curr Probl Surg2024;61:101625

[30]

Miles TJ.Machine learning in cardiac surgery: a narrative review.J Thorac Dis2024;16:2644-53 PMCID:PMC11087616

[31]

Gadhachanda KR,Bozorgi A.Artificial intelligence in cardiovascular procedures: a bibliometric and visual analysis study.Ann Med Surg2025;87:2187-203 PMCID:PMC11981337

[32]

Kankanamge D,Ong Z.Artificial intelligence based assessment of minimally invasive surgical skills using standardised objective metrics - a narrative review.Am J Surg2025;241:116074

[33]

Bellini V,Bertorelli G.Machine learning in perioperative medicine: a systematic review.J Anesth Analg Crit Care2022;2:2 PMCID:PMC8761048

[34]

Leivaditis V,Papatriantafyllou A.Artificial intelligence in cardiac surgery: transforming outcomes and shaping the future.Clin Pract2025;15:17 PMCID:PMC11763739

[35]

Theriault-Lauzier P,Sengupta PP.Artificial intelligence in valvular heart disease: current evidence and future perspectives.Eur Heart J Valvular Cardiol2025;1:xwaf002

[36]

Graeßner M,Frank E.Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data.Sci Rep2023;13:7128 PMCID:PMC10153050

[37]

Nashef SAM.Artificial intelligence and cardiac surgery risk assessment.Eur J Cardiothorac Surg2023;63:ezad226

[38]

Abdel Malek M,Dahan A.Generation of preoperative anaesthetic plans by ChatGPT-4.0: a mixed-method study.Br J Anaesth2025;134:1333-40

[39]

Henckert D,Schweiger G.Attitudes of anesthesiologists toward artificial intelligence in anesthesia: a multicenter, mixed qualitative-quantitative study.J Clin Med2023;12:2096 PMCID:PMC10054443

[40]

Brandenburg JM,Wagner M.Can surgeons trust AI? Perspectives on machine learning in surgery and the importance of eXplainable artificial intelligence (XAI).Langenbecks Arch Surg2025;410:53 PMCID:PMC11775030

[41]

King A,Macefield RC.Use of artificial intelligence in the analysis of digital videos of invasive surgical procedures: scoping review.BJS Open2025;9:zraf073 PMCID:PMC12268333

[42]

Pedrett R,Beldi G,Lavanchy JL.Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review.Surg Endosc2023;37:7412-24 PMCID:PMC10520175

[43]

Guo C,Shi Z.Artificial intelligence in surgical medicine: a brief review.Ann Med Surg2025;87:2180-6 PMCID:PMC11981352

[44]

Arjomandi Rad A, Vardanyan R, Athanasiou T, Maessen J, Sardari Nia P. The ethical considerations of integrating artificial intelligence into surgery: a review.Interdiscip Cardiovasc Thorac Surg2025;40:ivae192 PMCID:PMC11904299

[45]

Cross JL,Onofrey JA.Bias in medical AI: implications for clinical decision-making.PLOS Digit Health2024;3:e0000651 PMCID:PMC11542778

[46]

Khanna NN,Viswanathan V.Economics of artificial intelligence in healthcare: diagnosis vs. treatment.Healthcare2022;10:2493 PMCID:PMC9777836

[47]

De Simone B, Deeken G, Catena F. Balancing ethics and innovation: can artificial intelligence safely transform emergency surgery? A narrative perspective.J Clin Med2025;14:3111 PMCID:PMC12072847

[48]

Fangerau H.Artifical intelligence in surgery: ethical considerations in the light of social trends in the perception of health and medicine.EFORT Open Rev2024;9:323-8 PMCID:PMC11099585

[49]

Power D.Ethical considerations in the era of AI, automation, and surgical robots: there are plenty of lessons from the past.Discov Artif Intell2024;4:65

PDF

258

Accesses

0

Citation

Detail

Sections
Recommended

/