The current state of artificial intelligence in robotic esophageal surgery

Constantine M. Poulos , Ryan Cassidy , Eamon Khatibifar , Erik Holzwanger , Lana Schumacher

Mini-invasive Surgery ›› 2025, Vol. 9 ›› Issue (1) : 6

PDF
Mini-invasive Surgery ›› 2025, Vol. 9 ›› Issue (1) :6 DOI: 10.20517/2574-1225.2024.42
Review

The current state of artificial intelligence in robotic esophageal surgery

Author information +
History +
PDF

Abstract

Artificial intelligence (AI) is becoming increasingly utilized as a tool for physicians to optimize medical care and patient outcomes. The multifaceted approach to managing esophageal cancer provides a perfect opportunity for machine learning to support clinicians in all stages of management. Preoperatively, AI may aid gastroenterologists and surgeons in diagnosing and prognosticating premalignant or early-stage lesions. Intraoperatively, AI may also aid surgeons in identifying anatomic structures or minimize the learning curve for new learners. Postoperatively, machine learning algorithms can help predict complications and guide high-risk patients through recovery. While still evolving, AI holds promise in enhancing the efficiency and efficacy of multidisciplinary esophageal cancer care.

Keywords

Artificial intelligence / machine learning / neural network / esophagectomy / robotic

Cite this article

Download citation ▾
Constantine M. Poulos, Ryan Cassidy, Eamon Khatibifar, Erik Holzwanger, Lana Schumacher. The current state of artificial intelligence in robotic esophageal surgery. Mini-invasive Surgery, 2025, 9(1): 6 DOI:10.20517/2574-1225.2024.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bellini V,Del Rio P.Artificial intelligence in thoracic surgery: a narrative review.J Thorac Dis2021;13:6963-75 PMCID:PMC8743413

[2]

Seastedt KP,Mahindre SA.A scoping review of artificial intelligence applications in thoracic surgery.Eur J Cardiothorac Surg2022;61:239-48 PMCID:PMC8932394

[3]

Zhang YH,Yuan XL.Artificial intelligence-assisted esophageal cancer management: now and future.World J Gastroenterol2020;26:5256-71 PMCID:PMC7504247

[4]

Kröner PT,Glicksberg BS.Artificial intelligence in gastroenterology: a state-of-the-art review.World J Gastroenterol2021;27:6794-824 PMCID:PMC8567482

[5]

Patel A,Roknsharifi M,Javed H.Artificial intelligence in the detection of Barrett’s esophagus: a systematic review.Cureus2023;15:e47755 PMCID:PMC10676286

[6]

Meinikheim M,Ebigbo A.Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia.Clin Endosc2023;56:14-22 PMCID:PMC9902686

[7]

de Groof J,van der Putten J.The Argos project: the development of a computer-aided detection system to improve detection of Barrett’s neoplasia on white light endoscopy.United European Gastroenterol J2019;7:538-47 PMCID:PMC6488793

[8]

Fockens KN,Boers T.Towards a robust and compact deep learning system for primary detection of early Barrett’s neoplasia: initial image-based results of training on a multi-center retrospectively collected data set.United European Gastroenterol J2023;11:324-36 PMCID:PMC10165317

[9]

Abdelrahim M,Maeda N.Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video).Gastrointest Endosc2023;97:422-34

[10]

Hussein M,Lines D.A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks.United European Gastroenterol J2022;10:528-37 PMCID:PMC9278593

[11]

Faghani S,David Vogelsang.Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus.Gastrointest Endosc2022;96:918-25.e3

[12]

Guleria S,Pulido JV.Deep learning systems detect dysplasia with human-like accuracy using histopathology and probe-based confocal laser endomicroscopy.Sci Rep2021;11:5086 PMCID:PMC7930108

[13]

Iwagami H,Aoyama K.Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma.J Gastroenterol Hepatol2021;36:131-6

[14]

Wu L,Zhou W.Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy.Gut2019;68:2161-9 PMCID:PMC6872441

[15]

Duits LC, Khoshiwal AM, Frei NF, et al; Barrett’s SURF LGD Study Pathologists Consortium. An automated tissue systems pathology test can standardize the management and improve health outcomes for patients with Barrett’s esophagus. Am J Gastroenterol. 2023;118:2025-32. PMCID:PMC10617665

[16]

Rice TW, Lu M, Ishwaran H, Blackstone EH; Worldwide Esophageal Cancer Collaboration Investigators. Precision surgical therapy for adenocarcinoma of the esophagus and esophagogastric junction. J Thorac Oncol. 2019;14:2164-75. PMCID:PMC6876319

[17]

Sato F,Selaru FM.Prediction of survival in patients with esophageal carcinoma using artificial neural networks.Cancer2005;103:1596-605

[18]

Warnecke-Eberz U,Bollschweiler E.TaqMan low-density arrays and analysis by artificial neuronal networks predict response to neoadjuvant chemoradiation in esophageal cancer.Pharmacogenomics2010;11:55-64

[19]

Ypsilantis PP,Sohn HM.Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks.PLoS One2015;10:e0137036 PMCID:PMC4565716

[20]

Gupta A,Chennatt JJ,Ahmed SS.Artificial intelligence: a new tool in surgeon’s hand.J Educ Health Promot2022;11:93 PMCID:PMC9093628

[21]

Anteby R,Soffer S.Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test accuracy meta-analysis.Surg Endosc2021;35:1521-33

[22]

den Boer RB,de Jongh C.Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy.Surg Endosc2023;37:5164-75 PMCID:PMC10322962

[23]

Sato K,Matsuzaki H.Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using artificial intelligence.Surg Endosc2022;36:5531-9

[24]

Takeuchi M,Saito K.Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy using artificial intelligence.Ann Surg Oncol2022;29:6847-55

[25]

Zhao Z,Sun X,Feng H.Prediction model of anastomotic leakage among esophageal cancer patients after receiving an esophagectomy: machine learning approach.JMIR Med Inform2021;9:e27110 PMCID:PMC8367102

[26]

van de Beld JJ,Mikhal J.Complication prediction after esophagectomy with machine learning.Diagnostics2024;14:439 PMCID:PMC10888312

[27]

Bolourani S,Diao L.Using machine learning to predict early readmission following esophagectomy.J Thorac Cardiovasc Surg2021;161:1926-39.e8

[28]

Jung JO,Bozek K.Prediction of postoperative complications after oesophagectomy using machine-learning methods.Br J Surg2023;110:1361-6

PDF

221

Accesses

0

Citation

Detail

Sections
Recommended

/