Mechanism of metabolic surgery for the treatment of Type 2 Diabetes Mellitus (T2DM)

David J Leishman , Sayeed Ikramuddin , Takeshi Naitoh

Mini-invasive Surgery ›› 2023, Vol. 7 ›› Issue (1) : 27

PDF
Mini-invasive Surgery ›› 2023, Vol. 7 ›› Issue (1) :27 DOI: 10.20517/2574-1225.2023.29
Review

Mechanism of metabolic surgery for the treatment of Type 2 Diabetes Mellitus (T2DM)

Author information +
History +
PDF

Abstract

After metabolic surgery, patients with type 2 diabetes (T2DM) typically experience a rapid improvement in glycemic control before any significant weight loss occurs. Furthermore, a significant proportion of patients are able to achieve long-term T2DM remission and improvement in β-cell function. While historically believed to be related to weight loss and caloric restriction, multiple weight loss independent mechanisms have been identified to contribute to the long-term glycemic effects induced by metabolic surgery. There are changes in bile acid metabolism, the gut microbiome, incretins, and other gut hormones after surgery that are implicated. It is also becoming increasingly evident that adipose tissue, specifically visceral adipose tissue, is implicated in the pathogenesis of insulin resistance (IR) and T2DM through inflammatory changes involving the host immune system. Therefore, metabolic surgery may exert its effects by reducing the inflammatory response through reduction of adipose. While these mechanisms may seem discrete, there is a significant cross-talk between all these factors that contributes to the regulation of glucose homeostasis. Together, this leads to reduced gluconeogenesis, improved glucose tissue uptake, reduced IR, and improved β-cell function after metabolic surgery.

Keywords

Metabolic surgery / type 2 diabetes mellitus / bile acids / gut microbiota

Cite this article

Download citation ▾
David J Leishman, Sayeed Ikramuddin, Takeshi Naitoh. Mechanism of metabolic surgery for the treatment of Type 2 Diabetes Mellitus (T2DM). Mini-invasive Surgery, 2023, 7(1): 27 DOI:10.20517/2574-1225.2023.29

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pories WJ,MacDonald KG.Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus.Ann Surg1995;222:339-50; discussion 350-2 PMCID:PMC1234815

[2]

Brethauer SA,Romero-Talamás H.Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus.Ann Surg2013;258:628-36; discussion 636-7 PMCID:PMC4110959

[3]

Cohen RV,Schiavon CA,Wajchenberg BL.Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity.Diabetes Care2012;35:1420-8 PMCID:PMC3379595

[4]

DeMaria EJ,Kellum JM,Wolfe LG.Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity.Ann Surg2002;235:640-5; discussion 645-7 PMCID:PMC1422489

[5]

Gill RS,Shi X,Karmali S.Sleeve gastrectomy and type 2 diabetes mellitus: a systematic review.Surg Obes Relat Dis2010;6:707-13

[6]

Schauer PR,Ikramuddin S.Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus.Ann Surg2003;238:467-84; discussion 84-5 PMCID:PMC1360104

[7]

Ikramuddin S,Lee WJ.Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial.JAMA2013;309:2240-9 PMCID:PMC3954742

[8]

ElSayed NA,Aroda VR.8. Obesity and weight management for the prevention and treatment of type 2 diabetes: standards of care in diabetes-2023.Diabetes Care2023;46:S128-39 PMCID:PMC9810466

[9]

Dixon JB,Playfair J.Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial.JAMA2008;299:316-23

[10]

Pok EH.Gastrointestinal metabolic surgery for the treatment of type 2 diabetes mellitus.World J Gastroenterol2014;20:14315-28 PMCID:PMC4202361

[11]

Batterham RL.Mechanisms of diabetes improvement following bariatric/metabolic surgery.Diabetes Care2016;39:893-901 PMCID:PMC5864134

[12]

Inabnet WB 3rd,Sherif B.Early outcomes of bariatric surgery in patients with metabolic syndrome: an analysis of the bariatric outcomes longitudinal database.J Am Coll Surg2012;214:550-6; discussion 556-7

[13]

Laferrère B,McGinty J.Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes.J Clin Endocrinol Metab2008;93:2479-85 PMCID:PMC2453054

[14]

Plum L,Febres G.Comparison of glucostatic parameters after hypocaloric diet or bariatric surgery and equivalent weight loss.Obesity2011;19:2149-57 PMCID:PMC3670603

[15]

Yoshino M,Yoshino J.Effects of diet versus gastric bypass on metabolic function in diabetes.N Engl J Med2020;383:721-32 PMCID:PMC7456610

[16]

Jackness C,Febres G.Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients.Diabetes2013;62:3027-32 PMCID:PMC3749351

[17]

Wing RR,Epstein LH,Gooding W.Long-term effects of modest weight loss in type II diabetic patients.Arch Intern Med1987;147:1749-53

[18]

Bosello O,Zamboni M.The benefits of modest weight loss in type II diabetes.Int J Obes Relat Metab Disord1997;21 Suppl 1:S10-3Available from: https://pubmed.ncbi.nlm.nih.gov/9130035/. [Last accessed on 19 Jul 2023]

[19]

Sjöström CD,Wedel H.Differentiated long-term effects of intentional weight loss on diabetes and hypertension.Hypertension2000;36:20-5

[20]

Wing RR,Wadden TA.Look AHEAD Research GroupBenefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes.Diabetes Care2011;34:1481-6 PMCID:PMC3120182

[21]

Kusminski CM,Scherer PE.Targeting adipose tissue in the treatment of obesity-associated diabetes.Nat Rev Drug Discov2016;15:639-60

[22]

Longo M,Naderi J.Adipose tissue dysfunction as determinant of obesity-associated metabolic complications.Int J Mol Sci2019;20:2358 PMCID:PMC6539070

[23]

Fox CS,Hoffmann U.Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study.Circulation2007;116:39-48

[24]

Makaronidis JM.Obesity, body weight regulation and the brain: insights from fMRI.Br J Radiol2018;91:20170910 PMCID:PMC6223152

[25]

Müller TD,Andermann ML.Ghrelin.Mol Metab2015;4:437-60 PMCID:PMC4443295

[26]

Pucci A.Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different.J Endocrinol Invest2019;42:117-28 PMCID:PMC6394763

[27]

Baggio LL.Biology of incretins: GLP-1 and GIP.Gastroenterology2007;132:2131-57

[28]

Ahrén B.Incretin dysfunction in type 2 diabetes: clinical impact and future perspectives.Diabetes Metab2013;39:195-201

[29]

Wing RR,Brancati FL.Look AHEAD Research GroupCardiovascular effects of intensive lifestyle intervention in type 2 diabetes.N Engl J Med2013;369:145-54 PMCID:PMC3791615

[30]

Leibel RL.Diminished energy requirements in reduced-obese patients.Metabolism1984;33:164-70

[31]

Sumithran P,Delbridge E.Long-term persistence of hormonal adaptations to weight loss.N Engl J Med2011;365:1597-604

[32]

Manning S,Batterham RL.Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms.J Clin Invest2015;125:939-48 PMCID:PMC4362264

[33]

Cummings DE,Frayo RS.Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.N Engl J Med2002;346:1623-30

[34]

Yousseif A,Karra E.Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans.Obes Surg2014;24:241-52 PMCID:PMC3890046

[35]

Manning S,Batterham RL.GLP-1: a mediator of the beneficial metabolic effects of bariatric surgery?.Physiology2015;30:50-62

[36]

Dirksen C,Bojsen-Møller KN.Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass.Neurogastroenterol Motil2013;25:346-e255

[37]

Johannessen H,Zhao CM.Eating behavior and glucagon-like peptide-1-producing cells in interposed ileum and pancreatic islets in rats subjected to ileal interposition associated with sleeve gastrectomy.Obes Surg2013;23:39-49

[38]

Ramzy AR,Chelikani PK.Ileal transposition surgery produces ileal length-dependent changes in food intake, body weight, gut hormones and glucose metabolism in rats.Int J Obes2014;38:379-87

[39]

Melissas J,Klinaki I.Alterations of global gastrointestinal motility after sleeve gastrectomy: a prospective study.Ann Surg2013;258:976-82

[40]

Sioka E,Perivoliotis K.Impact of laparoscopic sleeve gastrectomy on gastrointestinal motility.Gastroenterol Res Pract2018;2018:4135813 PMCID:PMC5907392

[41]

Vives M,Danús M.Analysis of gastric physiology after laparoscopic sleeve gastrectomy (LSG) with or without antral preservation in relation to metabolic response: a randomised study.Obes Surg2017;27:2836-44

[42]

Yehoshua RT,Stein M.Laparoscopic sleeve gastrectomy - volume and pressure assessment.Obes Surg2008;18:1083-8

[43]

Trung VN,Furukawa A.Enhanced intestinal motility during oral glucose tolerance test after laparoscopic sleeve gastrectomy: preliminary results using cine magnetic resonance imaging.PLoS One2013;8:e65739 PMCID:PMC3688799

[44]

Dutia R,Bunker P.Response to comment on Dutia et al. Limited recovery of β-cell function after gastric bypass despite clinical diabetes remission.Diabetes2014;63:1214-23 PMCID:PMC4179312

[45]

Anderwald CH,Promintzer-Schifferl M.Alterations in gastrointestinal, endocrine, and metabolic processes after bariatric Roux-en-Y gastric bypass surgery.Diabetes Care2012;35:2580-7 PMCID:PMC3507557

[46]

Näslund E,Hellström PM.Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity.Int J Obes1997;21:387-92

[47]

Jiménez A,Viaplana-Masclans J,Vidal J.GLP-1 action and glucose tolerance in subjects with remission of type 2 diabetes after gastric bypass surgery.Diabetes Care2013;36:2062-9 PMCID:PMC3687297

[48]

Jørgensen NB,Bojsen-Møller KN.Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes.Diabetes2013;62:3044-52 PMCID:PMC3749359

[49]

Salehi M,D’Alessio DA.Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans.Diabetes2011;60:2308-14 PMCID:PMC3161307

[50]

Chambers AP,Ryan KK.Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats.Gastroenterology2011;141:950-8 PMCID:PMC3163814

[51]

Gerich J.Pathogenesis and management of postprandial hyperglycemia: role of incretin-based therapies.Int J Gen Med2013;6:877-95 PMCID:PMC3884108

[52]

Inzucchi SE,Buse JB.Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD).Diabetologia2012;55:1577-96

[53]

Ryan D.GLP-1 receptor agonists: nonglycemic clinical effects in weight loss and beyond.Obesity2015;23:1119-29 PMCID:PMC4692091

[54]

Vilsbøll T,Junker AE,Gluud LL.Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials.BMJ2012;344:d7771 PMCID:PMC3256253

[55]

Astrup A,Van Gaal L.NN8022-1807 Study GroupEffects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study.Lancet2009;374:1606-16

[56]

Flint A,Astrup A.Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans.J Clin Invest1998;101:515-20 PMCID:PMC508592

[57]

Kratzsch J,Bottner A.Circulating soluble leptin receptor and free leptin index during childhood, puberty, and adolescence.J Clin Endocrinol Metab2002;87:4587-94

[58]

Iepsen EW,Dirksen C.Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss.Int J Obes2015;39:834-41 PMCID:PMC4424381

[59]

Dirksen C,Bojsen-Møller KN.Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass.Int J Obes2013;37:1452-9

[60]

le Roux CW,Werling M.Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass.Ann Surg2007;246:780-5

[61]

Svane MS,Bojsen-Møller KN.Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery.Int J Obes2016;40:1699-706

[62]

Hartstra AV,Bäckhed F.Insights into the role of the microbiome in obesity and type 2 diabetes.Diabetes Care2015;38:159-65

[63]

Arora T.The gut microbiota and metabolic disease: current understanding and future perspectives.J Intern Med2016;280:339-49

[64]

Holmes E,Marchesi JR.Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk.Cell Metab2012;16:559-64

[65]

Damms-Machado A,Schollenberger AE.Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption.Biomed Res Int2015;2015:806248 PMCID:PMC4330959

[66]

Furet JP,Tap J.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers.Diabetes2010;59:3049-57 PMCID:PMC2992765

[67]

Jahansouz C,Bernlohr DA,Khoruts A.Sleeve gastrectomy drives persistent shifts in the gut microbiome.Surg Obes Relat Dis2017;13:916-24

[68]

Jahansouz C,Kizy S.Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy.Ann Surg2019;269:1092-100

[69]

Palleja A,Allin KH.Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota.Genome Med2016;8:67 PMCID:PMC4908688

[70]

Nadal I,Marcos A.Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents.Int J Obes2009;33:758-67

[71]

Graessler J,Zhong H.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters.Pharmacogenomics J2013;13:514-22

[72]

Kong LC,Aron-Wisnewsky J.Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes.Am J Clin Nutr2013;98:16-24

[73]

Liu H,Zhang X.Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes.J Diabetes Investig2018;9:13-20 PMCID:PMC5754516

[74]

Tremaroli V,Werling M.Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation.Cell Metab2015;22:228-38 PMCID:PMC4537510

[75]

Davies NK,Plank LD.Altered gut microbiome after bariatric surgery and its association with metabolic benefits: a systematic review.Surg Obes Relat Dis2019;15:656-65

[76]

Russell DW.The enzymes, regulation, and genetics of bile acid synthesis.Annu Rev Biochem2003;72:137-74

[77]

Slijepcevic D.Bile acid uptake transporters as targets for therapy.Dig Dis2017;35:251-8 PMCID:PMC5516419

[78]

Russell DW.Bile acid biosynthesis.Biochemistry1992;31:4737-49

[79]

Thomas C,Pruzanski M,Schoonjans K.Targeting bile-acid signalling for metabolic diseases.Nat Rev Drug Discov2008;7:678-93

[80]

Li-Hawkins J,Olin M.Cholic acid mediates negative feedback regulation of bile acid synthesis in mice.J Clin Invest2002;110:1191-200

[81]

Lu TT,Repa JJ.Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors.Mol Cell2000;6:507-15

[82]

Makishima M,Repa JJ.Identification of a nuclear receptor for bile acids.Science1999;284:1362-5

[83]

Parks DJ,Bledsoe RK.Bile acids: natural ligands for an orphan nuclear receptor.Science1999;284:1365-8

[84]

Teodoro JS,Palmeira CM.Hepatic FXR: key regulator of whole-body energy metabolism.Trends Endocrinol Metab2011;22:458-66

[85]

Lefebvre P,Lien F,Staels B.Role of bile acids and bile acid receptors in metabolic regulation.Physiol Rev2009;89:147-91

[86]

Wahlström A,Marschall HU.Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.Cell Metab2016;24:41-50

[87]

Lee FY,Hubbert ML,Zhang Y.FXR, a multipurpose nuclear receptor.Trends Biochem Sci2006;31:572-80

[88]

Urizar NL,Moore DD.The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression.J Biol Chem2000;275:39313-7

[89]

Trauner M.Bile salt transporters: molecular characterization, function, and regulation.Physiol Rev2003;83:633-71

[90]

Campana G,Roda A.Regulation of ileal bile acid-binding protein expression in Caco-2 cells by ursodeoxycholic acid: role of the farnesoid X receptor.Biochem Pharmacol2005;69:1755-63

[91]

Sayin SI,Felin J.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.Cell Metab2013;17:225-35

[92]

Inagaki T,Lee YK.Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.Proc Natl Acad Sci U S A2006;103:3920-5 PMCID:PMC1450165

[93]

Zhang Y,Barrera G.Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice.Proc Natl Acad Sci U S A2006;103:1006-11 PMCID:PMC1347977

[94]

Kir S,Samuel VT.FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.Science2011;331:1621-4 PMCID:PMC3076083

[95]

Watanabe M,Wang L.Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c.J Clin Invest2004;113:1408-18 PMCID:PMC406532

[96]

Nugent JL,Wirth KM.A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity.iScience2021;24:103421 PMCID:PMC8633018

[97]

Ide T,Yahagi N.SREBPs suppress IRS-2-mediated insulin signalling in the liver.Nat Cell Biol2004;6:351-7

[98]

Preidis GA,Moore DD.Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.J Clin Invest2017;127:1193-201 PMCID:PMC5373864

[99]

Kawamata Y,Hosoya M.A G protein-coupled receptor responsive to bile acids.J Biol Chem2003;278:9435-40

[100]

Maruyama T,Suzuki J.Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice.J Endocrinol2006;191:197-205

[101]

Watanabe M,Mataki C.Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation.Nature2006;439:484-9

[102]

Thomas C,Noriega L.TGR5-mediated bile acid sensing controls glucose homeostasis.Cell Metab2009;10:167-77 PMCID:PMC2739652

[103]

Katsuma S,Tsujimoto G.Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1.Biochem Biophys Res Commun2005;329:386-90

[104]

Patti ME,Bianco AC.Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.Obesity2009;17:1671-7 PMCID:PMC4683159

[105]

Sachdev S,Billington C.FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes.Obes Surg2016;26:957-65 PMCID:PMC4751075

[106]

Gerhard GS,Wood GC.A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass.Diabetes Care2013;36:1859-64 PMCID:PMC3687273

[107]

Kohli R,Setchell KD.Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities.Am J Physiol Gastrointest Liver Physiol2010;299:G652-60 PMCID:PMC2950688

[108]

Eskandaros MS.Standard biliopancreatic limb (50 cm) Roux-en-Y gastric bypass versus long biliopancreatic limb (100 cm) Roux-en-Y gastric bypass in patients with body mass index 40-50 kg/m2: a randomized prospective study.Obes Surg2022;32:577-86

[109]

Zerrweck C,Sepúlveda EM,Guilbert L.Long versus short biliopancreatic limb in Roux-en-Y gastric bypass: short-term results of a randomized clinical trial.Surg Obes Relat Dis2021;17:1425-30

[110]

Schneider R,Peterli R.Roux-en-Y gastric bypass with a long versus a short biliopancreatic limb improves weight loss and glycemic control in obese mice.Surg Obes Relat Dis2022;18:1286-97

[111]

Miyachi T,Shibata C.Biliopancreatic limb plays an important role in metabolic improvement after duodenal-jejunal bypass in a rat model of diabetes.Surgery2016;159:1360-71

[112]

Tsuchiya T,Nagao M.Increased bile acid signals after duodenal-jejunal bypass improve non-alcoholic steatohepatitis (NASH) in a rodent model of diet-induced NASH.Obes Surg2018;28:1643-52

[113]

Ise I,Imoto H.Changes in enterohepatic circulation after duodenal-jejunal bypass and reabsorption of bile acids in the bilio-pancreatic limb.Obes Surg2019;29:1901-10

[114]

Ueno T,Imoto H.Mechanism of bile acid reabsorption in the biliopancreatic limb after duodenal-jejunal bypass in rats.Obes Surg2020;30:2528-37

[115]

Steinert RE,Keller S.Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial.Obesity2013;21:E660-8

[116]

Seeley RJ,Sandoval DA.The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes.Cell Metab2015;21:369-78 PMCID:PMC4351155

[117]

Kindel TL,Helm MC.Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy.Surg Endosc2018;32:805-12 PMCID:PMC5844265

[118]

Kang K,Lee JM.Mouse ghrelin-O-acyltransferase (GOAT) plays a critical role in bile acid reabsorption.FASEB J2012;26:259-71

[119]

Panduro M,Mathis D.Tissue tregs.Annu Rev Immunol2016;34:609-33 PMCID:PMC4942112

[120]

Shapouri-Moghaddam A,Vazini H.Macrophage plasticity, polarization, and function in health and disease.J Cell Physiol2018;233:6425-40

[121]

Becker M,Daniel C.Adipose-tissue regulatory T cells: critical players in adipose-immune crosstalk.Eur J Immunol2017;47:1867-74

[122]

Hang S,Yao L.Bile acid metabolites control TH17 and Treg cell differentiation.Nature2019;576:143-8 PMCID:PMC6949019

[123]

Berthoud HR.Vagal and hormonal gut-brain communication: from satiation to satisfaction.Neurogastroenterol Motil2008;20 Suppl 1:64-72 PMCID:PMC3617963

[124]

Stefanidis A.Neuroendocrine mechanisms underlying bariatric surgery: insights from human studies and animal models.J Neuroendocrinol2017;29:e12534

[125]

Ikramuddin S,Brancatisano A.Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial.JAMA2014;312:915-22

[126]

Sarr MG,Brancatisano R.EMPOWER Study GroupThe EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity.Obes Surg2012;22:1771-82

PDF

47

Accesses

0

Citation

Detail

Sections
Recommended

/