Cu2+-Coordinated NLG919: A Drug Delivery Nanoplatform to Activate Antitumor Immunity via Inducing Immunogenic Cell Death and Inhibiting Indoleamine 2,3-Dioxygenase-1
Lin-Ping Zhao , Chu-Yu Huang , Rong-Rong Zheng , Hang-Yu Zhou , Guang-Miao Chen , Yun Ye , Ying-Ling Miao , Shi-Ying Li
MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (3) : e70024
Cu2+-Coordinated NLG919: A Drug Delivery Nanoplatform to Activate Antitumor Immunity via Inducing Immunogenic Cell Death and Inhibiting Indoleamine 2,3-Dioxygenase-1
Chemotherapeutic drug combination to activate systemic antitumor immunity is appealing to fight metastatic tumors. In this study, copper ion (Cu2+) is able to coordinate with NLG919, serving as a nanoplatform (designated as CuN) for drug delivery. Meanwhile, such a metal-coordinated nanomedicine can also activate systemic antitumor immunity through immunogenic cell death (ICD) induction and indoleamine 2,3-dioxygenase-1 (IDO1) inhibition. Some representing antitumor agents, including cinnamic acid, mitoxantrone, docetaxel, β-lapachone, tazemetostat and mocetinostat, can be encapsulated into CuN regardless of their different physicochemical characteristics. Taking β-lapachone for example, the drug-carrying CuN (designated as Lap@CuN) can catalyze the production of excessive reactive oxygen species (ROS) to suppress tumor cell proliferation and trigger a robust ICD to release damage associated molecular patterns (DAMPs). Consequently, Lap@CuN not only inhibits primary tumor growth through chemotherapy but also reactivates the immune cells to exert an abscopal effect. Benefiting from the immune modulatory effect, Lap@CuN reduces the lung metastasis while not causing obvious side effects on mice. This study presents a universal metal-coordinated nanoplatform for the delivery of chemotherapeutic combinations, offering new insights into the design of combination therapies that can potentiate immunotherapeutic responses.
drug delivery / immunogenic cell death / metal-drug coordination
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
2025 The Author(s). MedComm – Biomaterials and Applications published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
/
| 〈 |
|
〉 |