
Biofilm formation in cardiovascular infection and bioengineering approaches for treatment and prevention
Qi Tong, Qiyue Xu, Jie Cai, Yiren Sun, Zhengjie Wang, Yongjun Qian
MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (1) : e70003.
Biofilm formation in cardiovascular infection and bioengineering approaches for treatment and prevention
At present, cardiovascular infection such as infective endocarditis (IE) has become a major disease with a high mortality rate. The essence of IE is actually the infection associated with biofilm formation, which can occur not only on native heart valves, but also on prosthetic heart valves and cardiovascular implants such as left heart assist devices, vascular grafts, and pacemakers. Biofilms are bacterial aggregates that are composed of a self-produced extracellular polymeric substance (EPS), which is difficult and challenging for the treatment of cardiovascular infections. Therefore, it is important to explore and develop effective anti-biofilm methods for the treatment of biofilm-associated cardiovascular infection. This review provides comprehension of strategies for degrading EPS in biofilm, the application of nanodrug delivery systems for biofilm-related infections, the strategy for targeting drug resistance genes through gene editing technology and strategy for targeting quorum sensing in biofilm. Furthermore, this review also provides some strategies to optimize the antibacterial properties of cardiovascular implants to prevent biofilm formation. The applications of these strategies will provide novel preventive and therapeutic ways for biofilm-associated cardiovascular infections.
antibacterial modification / biofilm / cardiovascular infection / infective endocarditis / stimuliresponsive nanodrug delivery systems
[1] |
KouijzerJJP, Noordermeer DJ, van LeeuwenWJ, VerkaikNJ, Lattwein KR. Native valve, prosthetic valve, and cardiac device-related infective endocarditis: a review and update on current innovative diagnostic and therapeutic strategies. Front Cell Dev Biol. 2022;10:995508.
CrossRef
Google scholar
|
[2] |
QueYA, Moreillon P. Infective endocarditis. Nat Rev Cardiol. 2011;8(6):322-336.
CrossRef
Google scholar
|
[3] |
CahillTJ, Prendergast BD. Infective endocarditis. The Lancet. 2016;387(10021):882-893.
CrossRef
Google scholar
|
[4] |
RothGA, MensahGA, FusterV. The global burden of cardiovascular diseases and risks. J Am Coll Cardiol. 2020;76(25):2980-2981.
CrossRef
Google scholar
|
[5] |
MensahGA, RothGA, FusterV. The global burden of cardiovascular diseases and risk Factors. J Am Coll Cardiol. 2019;74(20):2529-2532.
CrossRef
Google scholar
|
[6] |
BerishaB, Ragnarsson S, OlaisonL, RasmussenM. Microbiological etiology in prosthetic valve endocarditis: a nationwide registry study. J Intern Med. 2022;292(3):428-437.
CrossRef
Google scholar
|
[7] |
Del ValD, Panagides V, MestresCA, MiróJM, Rodés-Cabau J. Infective endocarditis after transcatheter aortic valve replacement. J Am Coll Cardiol. 2023;81(4):394-412.
CrossRef
Google scholar
|
[8] |
de SaDDC, Tleyjeh IM, AnavekarNS, et al. Epidemiological trends of infective endocarditis: a population-based study in olmsted county, minnesota. Mayo Clin Proc. 2010;85(5):422-426.
CrossRef
Google scholar
|
[9] |
ForestierE, Fraisse T, Roubaud-BaudronC, Selton-SutyC, PaganiL. Managing infective endocarditis in the elderly: new issues for an old disease. Clin Interv Aging. 2016;11:1199-1206.
CrossRef
Google scholar
|
[10] |
WuZ, ChenY, XiaoT, Niu T, ShiQ, XiaoY. The clinical features and prognosis of infective endocarditis in the elderly from 2007 to 2016 in a tertiary hospital in China. BMC Infect Dis. 2019;19(1):937.
CrossRef
Google scholar
|
[11] |
ShahASV, McAllister DA, GallacherP, et al. Incidence, microbiology, and outcomes in patients hospitalized with infective endocarditis. Circulation. 2020;141(25):2067-2077.
CrossRef
Google scholar
|
[12] |
Del PozoJL. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16(1):51-65.
CrossRef
Google scholar
|
[13] |
Hall-StoodleyL, Costerton JW, StoodleyP. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95-108.
CrossRef
Google scholar
|
[14] |
KarygianniL, RenZ, KooH, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. TIM. 2020;28(8):668-681.
CrossRef
Google scholar
|
[15] |
ZouT, LuW, MezhuevY, et al. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharmaceut Biopharmaceut. 2021;166:30-43.
CrossRef
Google scholar
|
[16] |
XieA, HanifS, OuyangJ, et al. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine. 2020;56:102821.
CrossRef
Google scholar
|
[17] |
ColillaM, Vallet-Regí M. Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. Int J Mol Sci. 2020;21(22):8605.
CrossRef
Google scholar
|
[18] |
ObuobiS, Ngoc Phung A, JulinK, JohannessenM, Škalko-Basnet N. Biofilm responsive zwitterionic antimicrobial nanoparticles to treat cutaneous infection. Biomacromolecules. 2022;23(1):303-315.
CrossRef
Google scholar
|
[19] |
JiaD, MaX, LuY, et al. Ros-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chin Chem Lett. 2021;32(1):162-167.
CrossRef
Google scholar
|
[20] |
ZhaoS, LiJ, WangF, et al. Semi-elastic core-shell nanoparticles enhanced the oral bioavailability of peptide drugs. Chin Chem Lett. 2020;31(5):1147-1152.
CrossRef
Google scholar
|
[21] |
RubeyKM, Brenner JS. Nanomedicine to fight infectious disease. Adv Drug Deliv Rev. 2021;179:113996.
CrossRef
Google scholar
|
[22] |
XiongMH, BaoY, YangXZ, Wang YC, SunB, WangJ. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc. 2012;134(9):4355-4362.
CrossRef
Google scholar
|
[23] |
ThamphiwatanaS, GaoW, PornpattananangkulD, et al. Phospholipase a2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Mater Chem B. 2014;2(46):8201-8207.
CrossRef
Google scholar
|
[24] |
Deiss-YehielyE, Cárcamo-Oyarce G, BergerAG, RibbeckK, Hammond PT. Ph-responsive, charge-reversing layer-by-layer nanoparticle surfaces enhance biofilm penetration and eradication. ACS Biomater Sci Eng. 2023;9(8):4794-4804.
CrossRef
Google scholar
|
[25] |
AlbayatyYN, ThomasN, JambhrunkarM, et al. Enzyme responsive copolymer micelles enhance the anti-biofilm efficacy of the antiseptic chlorhexidine. Int J Pharm. 2019;566:329-341.
CrossRef
Google scholar
|
[26] |
XiaoY, XuM, LvN, et al. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy. Acta Biomater. 2021;122:291-305.
CrossRef
Google scholar
|
[27] |
ZhaoY, DaiX, WeiX, et al. Near-infrared light-activated thermosensitive liposomes as efficient agents for photothermal and antibiotic synergistic therapy of bacterial biofilm. ACS Appl Mater Interfaces. 2018;10(17):14426-14437.
CrossRef
Google scholar
|
[28] |
LiGJ, LiJH, HouYR, et al Levofloxacin-loaded nanosonosensitizer as a highly efficient therapy for bacillus calmette-guerin infections based on bacteria-specific labeling and sonotheranostic strategy. Int J Nanomed. 2021;16:6553-6573.
CrossRef
Google scholar
|
[29] |
HuCMJ, FangRH, WangKC, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118-121.
CrossRef
Google scholar
|
[30] |
HentzerM, RiedelK, RasmussenTB, et al. Inhibition of quorum sensing in pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 2002;148(Pt 1):87-102.
CrossRef
Google scholar
|
[31] |
BeltsiosE, Zubarevich A, RuemkeS, et al. Antibacterial copper-filled tio(2) coating of cardiovascular implants to prevent infective endocarditis-a pilot study. Artif Organs. 2024;48(4):356-364.
CrossRef
Google scholar
|
[32] |
MichalichaA, Espona-Noguera A, CanalC, et al. Polycatecholamine and gentamicin as modifiers for antibacterial and blood-biocompatible polyester vascular prostheses. Biomaterials Advances. 2022;133:112645.
CrossRef
Google scholar
|
[33] |
Ben-HaimS, Gacinovic S, IsraelO. Cardiovascular infection and inflammation. Semin Nucl Med. 2009;39(2):103-114.
CrossRef
Google scholar
|
[34] |
LalaniT, Kanafani ZA, ChuVH, et al. Prosthetic valve endocarditis due to coagulase-negative staphylococci: findings from the international collaboration on endocarditis merged database. Eur J Clin Microbiol Infect Dis. 2006;25(6):365-368.
CrossRef
Google scholar
|
[35] |
GandhiT, Crawford T, RiddellJ. Cardiovascular implantable electronic device associated infections. Infect Dis Clin North Am. 2012;26(1):57-76.
CrossRef
Google scholar
|
[36] |
KeimKC, Horswill AR. Staphylococcus aureus. TIM. 2023;31(12):1300-1301.
CrossRef
Google scholar
|
[37] |
BurkeTL, RuppME, FeyPD. Staphylococcus epidermidis. TIM. 2023;31(7):763-764.
CrossRef
Google scholar
|
[38] |
LopardoHA, Vigliarolo L, BonofiglioL, et al. Beta-lactam antibiotics and viridans group streptococci. Rev Argent Microbiol. 2022;54(4):335-343.
CrossRef
Google scholar
|
[39] |
Echeverria-EsnalD, Sorli L, Navarrete-RoucoME, et al. Ampicillin-resistant and vancomycin-susceptible enterococcus faecium bacteremia: a clinical narrative review. Expert Rev Anti Infect Ther. 2023;21(7):759-775.
CrossRef
Google scholar
|
[40] |
NobileCJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71-92.
CrossRef
Google scholar
|
[41] |
HibbertTM, Whiteley M, RenshawSA, NeillDR, Fothergill JL. Emerging strategies to target virulence in pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol. 2024;50(6):1037-1052.
CrossRef
Google scholar
|
[42] |
ServyA, Valeyrie-Allanore L, AllaF, et al. Prognostic value of skin manifestations of infective endocarditis. JAMA Dermatology. 2014;150(5):494-500.
CrossRef
Google scholar
|
[43] |
AthanE, ChuVH, TattevinP, et al. Clinical characteristics and outcome of infective endocarditis involving implantable cardiac devices. JAMA. 2012;307(16):1727-1735.
CrossRef
Google scholar
|
[44] |
MarrieTJ, CooperJH, CostertonJW. Ultrastructure of cardiac bacterial vegetations on native valves with emphasis on alterations in bacterial morphology following antibiotic treatment. Can J Cardiol. 1987;3(6):275-280.
|
[45] |
SchwartzFA, Christophersen L, LaulundAS, et al. Novel human in vitro vegetation simulation model for infective endocarditis. APMIS. 2021;129(11):653-662.
CrossRef
Google scholar
|
[46] |
BosioS, LeekhaS, GambSI, Wright AJ, TerrellCL, MillerDV. Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc Pathol. 2012;21(4):361-364.
CrossRef
Google scholar
|
[47] |
SchoenrathF, Kursawe L, NersesianG, et al. Fluorescence in situ hybridization and polymerase chain reaction to detect infections in patients with left ventricular assist devices. ASAIO J. 2021;67(5):536-545.
CrossRef
Google scholar
|
[48] |
HøibyN, Bjarnsholt T, MoserC, et al. Escmid guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21(
CrossRef
Google scholar
|
[49] |
ElgharablyH, Hussain ST, ShresthaNK, BlackstoneEH, Pettersson GB. Current hypotheses in cardiac surgery: biofilm in infective endocarditis. Semin Thorac Cardiovasc Surg. 2016;28(1):56-59.
CrossRef
Google scholar
|
[50] |
WangX, LiuM, YuC, LiJ, ZhouX. Biofilm formation: mechanistic insights and therapeutic targets. Molecular Biomedicine. 2023;4(1):49.
CrossRef
Google scholar
|
[51] |
FergusonDL, GloagES, ParsekMR, Wozniak DJ. Extracellular DNA enhances biofilm integrity and mechanical properties of mucoid pseudomonas aeruginosa. J Bacteriol. 2023;205(10):e0023823.
CrossRef
Google scholar
|
[52] |
SolanoC, Echeverz M, LasaI. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96-104.
CrossRef
Google scholar
|
[53] |
KangS, KimJ, HurJK, Lee SS. Crispr-based genome editing of clinically important Escherichia coli se15 isolated from indwelling urinary catheters of patients. J Med Microbiol. 2017;66(1):18-25.
CrossRef
Google scholar
|
[54] |
TsagkariE, Connelly S, LiuZ, McBrideA, SloanWT. The role of shear dynamics in biofilm formation. NPJ Biofilms Microbiomes. 2022;8(1):33.
CrossRef
Google scholar
|
[55] |
RodesneyCA, RomanB, DhamaniN, et al. Mechanosensing of shear by pseudomonas aeruginosa leads to increased levels of the cyclic-di-gmp signal initiating biofilm development. Proceedings of the National Academy of Sciences. 2017;114(23):5906-5911.
CrossRef
Google scholar
|
[56] |
ShermanE, BaylesK, MoormeierD, Endres J, WeiT. Observations of shear stress effects on Staphylococcus aureus biofilm formation. mSphere. 2019;4(4):e0037219.
CrossRef
Google scholar
|
[57] |
WerdanK, DietzS, LöfflerB, et al. Mechanisms of infective endocarditis: pathogen-host interaction and risk states. Nat Rev Cardiol. 2014;11(1):35-50.
CrossRef
Google scholar
|
[58] |
LercheCJ, Schwartz F, TheutM, et al. Anti-biofilm approach in infective endocarditis exposes new treatment strategies for improved outcome. Front Cell Dev Biol. 2021;9:643335.
CrossRef
Google scholar
|
[59] |
AbebeGM. The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol. 2020;2020:1705814.
CrossRef
Google scholar
|
[60] |
KhatoonZ, McTiernan CD, SuuronenEJ, MahTF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067.
CrossRef
Google scholar
|
[61] |
GuptaP, SarkarS, DasB, Tribedi P, BhattacharjeeS. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol. 2016;198(1):1-15.
CrossRef
Google scholar
|
[62] |
LiP, YinR, ChengJ, Lin J. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. Int J Mol Sci. 2023;24(14):11680.
CrossRef
Google scholar
|
[63] |
LiP, ZongW, ZhangZ, et al. Effects and molecular mechanism of flagellar gene flgk on the motility, adhesion/invasion, and desiccation resistance of cronobacter sakazakii. Food Res Int. 2023;164:112418.
CrossRef
Google scholar
|
[64] |
NedeljkovićM, Sastre D, SundbergE. Bacterial flagellar filament: a supramolecular multifunctional nanostructure. Int J Mol Sci. 2021;22(14):7521.
CrossRef
Google scholar
|
[65] |
KolendaR, Ugorski M, GrzymajloK. Everything you always wanted to know about salmonella type 1 fimbriae, but were afraid to ask. Front Microbiol. 2019;10:1017.
CrossRef
Google scholar
|
[66] |
AzaraE, Longheu CM, AtteneS, et al. Comparative profiling of agr locus, virulence, and biofilm-production genes of human and ovine non-aureus staphylococci. BMC Vet Res. 2022;18(1):212.
CrossRef
Google scholar
|
[67] |
MackD, Fischer W, KrokotschA, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol. 1996;178(1):175-183.
CrossRef
Google scholar
|
[68] |
CostertonJW, Stewart PS, GreenbergEP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-1322.
CrossRef
Google scholar
|
[69] |
FulazS, VitaleS, QuinnL, Casey E. Nanoparticle-biofilm interactions: the role of the eps matrix. TIM. 2019;27(11):915-926.
CrossRef
Google scholar
|
[70] |
YinR, ChengJ, WangJ, Li P, LinJ. Treatment of pseudomonas aeruginosa infectious biofilms: challenges and strategies. Front Microbiol. 2022;13:955286.
CrossRef
Google scholar
|
[71] |
SerraDO, Richter AM, HenggeR. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol. 2013;195(24):5540-5554.
CrossRef
Google scholar
|
[72] |
FranklinMJ, NivensDE, WeadgeJT, Howell PL. Biosynthesis of the pseudomonas aeruginosa extracellular polysaccharides, alginate, pel, and psl. Front Microbiol. 2011;2:167.
CrossRef
Google scholar
|
[73] |
ChungJ, EishaS, ParkS, Morris AJ, MartinI. How three self-secreted biofilm exopolysaccharides of pseudomonas aeruginosa, Psl, Pel, and Alginate, can each be exploited for antibiotic adjuvant effects in cystic fibrosis lung infection. Int J Mol Sci. 2023;24(10):8709.
CrossRef
Google scholar
|
[74] |
KobayashiK, IwanoM. Bsla(yuab) forms a hydrophobic layer on the surface of bacillus subtilis biofilms. Mol Microbiol. 2012;85(1):51-66.
CrossRef
Google scholar
|
[75] |
KostakiotiM, Hadjifrangiskou M, HultgrenSJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the Dawn of the postantibiotic era. Cold Spring Harbor Perspect Med. 2013;3(4):a010306.
CrossRef
Google scholar
|
[76] |
RiceCJ, KoviS, WiscoDR. Cerebrovascular complication and valve surgery in infective endocarditis. Semin Neurol. 2021;41(4):437-446.
CrossRef
Google scholar
|
[77] |
KimJS, KangMK, ChoAJ, Seo YB, KimKI. Complicated infective endocarditis: a case series. J Med Case Reports. 2017;11(1):128.
CrossRef
Google scholar
|
[78] |
El-AndariR, SidhuS, WangW. Massive septic pulmonary embolism from infective endocarditis obstructing the right pulmonary artery: a case report. Future Cardiol. 2023;19(14):679-683.
CrossRef
Google scholar
|
[79] |
WilleJ, CoenyeT. Biofilm dispersion: the key to biofilm eradication or opening pandora’s box? Biofilm. 2020;2:100027.
CrossRef
Google scholar
|
[80] |
FlemingD, Rumbaugh K. Approaches to dispersing medical biofilms. Microorganisms. 2017;5(2):15.
CrossRef
Google scholar
|
[81] |
KaliaM, ReschMD, ChernyKE, Sauer K. The alginate and motility regulator amrz is essential for the regulation of the dispersion response by biofilms. mSphere. 2022;7(6):e0050522.
CrossRef
Google scholar
|
[82] |
WangB, LiuH, SunL, et al. Construction of high drug loading and enzymatic degradable multilayer films for self-defense drug release and long-term biofilm inhibition. Biomacromolecules. 2018;19(1):85-93.
CrossRef
Google scholar
|
[83] |
LiuY, RenY, LiY, et al. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 2018;79:331-343.
CrossRef
Google scholar
|
[84] |
MorrisAJ, Drinkovic D, PottumarthyS, et al. Gram stain, culture, and histopathological examination findings for heart valves removed because of infective endocarditis. Clin Infect Dis. 2003;36(6):697-704.
CrossRef
Google scholar
|
[85] |
MoskowitzSM, FosterJM, EmersonJ, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol. 2004;42(5):1915-1922.
CrossRef
Google scholar
|
[86] |
WangHZ, HongW, OanaCF, Song ZJ, HoibyN. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid biofilms. Antimicrob Agents Ch. 2011;55(9):4469-4474.
CrossRef
Google scholar
|
[87] |
LewisK. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol. 2012;211:121-133.
CrossRef
Google scholar
|
[88] |
SelanL, Passariello C, RizzoL, et al. Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. The Lancet. 2002;359(9324):2166-2168.
CrossRef
Google scholar
|
[89] |
ShresthaNK, LedtkeCS, WangH, et al. Heart valve culture and sequencing to identify the infective endocarditis pathogen in surgically treated patients. Ann Thorac Surg. 2015;99(1):33-37.
CrossRef
Google scholar
|
[90] |
MarínM, Muñoz P, SánchezM, et al. Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (pcr) and sequencing directly from heart valve tissue. Medicine. 2007;86(4):195-202.
CrossRef
Google scholar
|
[91] |
RoqueA, PizziMN, Cuéllar-CalàbriaH, Aguadé-BruixS. 18f-fdg-pet/ct angiography for the diagnosis of infective endocarditis. Curr Cardiol Rep. 2017;19(2):15.
CrossRef
Google scholar
|
[92] |
PizziMN, RoqueA, Fernández-HidalgoN, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography/computed tomography angiography: initial results at an infective endocarditis referral center. Circulation. 2015;132(12):1113-1126.
CrossRef
Google scholar
|
[93] |
NishimuraRA, OttoCM, BonowRO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2014;63(22):e57-e185.
CrossRef
Google scholar
|
[94] |
BaddourLM, WilsonWR, BayerAS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American heart association. Circulation. 2015;132(15):1435-1486.
|
[95] |
HollandTL, Baddour LM, BayerAS, HoenB, MiroJM, Fowler Jr.,VG. Infective endocarditis. Nat Rev Dis Primers. 2016;2:16059.
CrossRef
Google scholar
|
[96] |
LiM, KimJB, SastryBKS, Chen M. Infective endocarditis. The Lancet. 2024;404(10450):377-392.
CrossRef
Google scholar
|
[97] |
PrendergastBD, TornosP. Surgery for infective endocarditis who and when? Circulation. 2010;121(9):1141-1152.
CrossRef
Google scholar
|
[98] |
DelgadoV, Ajmone Marsan N, de WahaS, et al. 2023 ESC guidelines for the management of endocarditis. Eur Heart J. 2023;44(39):3948-4042.
|
[99] |
KangDH, KimYJ, KimSH, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366(26):2466-2473.
CrossRef
Google scholar
|
[100] |
SahaS, Joskowiak D, Marin-CuartasM, et al. Surgery for infective endocarditis following low-intermediate risk transcatheter aortic valve replacement-a multicentre experience. Eur J Cardiothorac Surg. 2022;62(1):ezac075.
CrossRef
Google scholar
|
[101] |
Ferrer-EspadaR, Shahrour H, PittsB, StewartPS, Sánchez-Gómez S, Martínez-De-Tejada G. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant pseudomonas aeruginosa strains. Sci Rep. 2019;9(1):3452.
CrossRef
Google scholar
|
[102] |
HallCW, MahTF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276-301.
CrossRef
Google scholar
|
[103] |
GheorghitaAA, Wozniak DJ, ParsekMR, HowellPL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev. 2023;47(6):fuad060.
CrossRef
Google scholar
|
[104] |
JenningsLK, Dreifus JE, ReichhardtC, et al. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Rep. 2021;34(8):108782.
CrossRef
Google scholar
|
[105] |
RomeroD, Aguilar C, LosickR, KolterR. Amyloid fibers provide structural integrity to bacillus subtilis biofilms. Proc Natl Acad Sci U S A. 2010;107(5):2230-2234.
CrossRef
Google scholar
|
[106] |
HobleyL, Ostrowski A, RaoFV, et al. Bsla is a self-assembling bacterial hydrophobin that coats the biofilm. Proc Natl Acad Sci U S A. 2015;112(38):E5371-E5375.
|
[107] |
SinghR, RayP, DasA, SharmaM. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010;65(9):1955-1958.
CrossRef
Google scholar
|
[108] |
Bahamondez-CanasTF, Zhang H, TewesF, LealJ, SmythHDC. Pegylation of tobramycin improves mucus penetration and antimicrobial activity against pseudomonas aeruginosa biofilms in vitro. Mol Pharmaceutics. 2018;15(4):1643-1652.
CrossRef
Google scholar
|
[109] |
JacobsHM, O’Neal L, LopattoE, WozniakDJ, Bjarnsholt T, ParsekMR. Mucoid pseudomonas aeruginosa can produce calcium-gelled biofilms independent of the matrix components psl and CdrA. J Bacteriol. 2022;204(5):e0056821.
CrossRef
Google scholar
|
[110] |
FrereJM, DuezC, GhuysenJM, Vandekerkhove J. Occurrence of a serine residue in the penicillin-binding site of the exocellular dd-carboxy-peptidase-transpeptidase from streptomyces R61. FEBS Lett. 1976;70(1):257-260.
CrossRef
Google scholar
|
[111] |
BushK, JacobyGA. Updated functional classification of β-Lactamases. Antimicrob Agents Chemother. 2010;54(3):969-976.
CrossRef
Google scholar
|
[112] |
BushK. Past and present perspectives on β-Lactamases. Antimicrob Agents Chemother. 2018;62(10):e0107618.
CrossRef
Google scholar
|
[113] |
BaggeN, CiofuO, SkovgaardLT, HØIby N. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growingpseudomonas aeruginosadue to chromosomal β-lactamase. APMIS. 2000;108(9):589-600.
CrossRef
Google scholar
|
[114] |
GiwercmanB, JensenET, HøibyN, KharazmiA, Costerton JW. Induction of beta-lactamase production in pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother. 1991;35(5):1008-1010.
CrossRef
Google scholar
|
[115] |
NicholsWW, EvansMJ, SlackMPE, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid pseudomonas-aeruginosa. Microbiology. 1989;135:1291-1303.
CrossRef
Google scholar
|
[116] |
MusiolR. Efflux systems as a target for anti-biofilm nanoparticles: perspectives on emerging applications. Expert Opin Ther Targets. 2023;27(10):953-963.
CrossRef
Google scholar
|
[117] |
ChitsazM, BrownMH. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem. 2017;61(1):127-139.
CrossRef
Google scholar
|
[118] |
BaughS, Phillips CR, EkanayakaAS, PiddockLJV, WebberMA. Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother. 2014;69(3):673-681.
CrossRef
Google scholar
|
[119] |
NzakizwanayoJ, Scavone P, JamshidiS, et al. Fluoxetine and thioridazine inhibit efflux and attenuate crystalline biofilm formation by proteus mirabilis. Sci Rep. 2017;7(1):12222.
CrossRef
Google scholar
|
[120] |
LeeYT, ChenHY, YangYS, et al. Adeabc efflux pump controlled by aders two component system conferring resistance to tigecycline, omadacycline and eravacycline in clinical carbapenem resistant acinetobacter nosocomialis. Front Microbiol. 2020;11:584789.
CrossRef
Google scholar
|
[121] |
ChetriS, Bhowmik D, PaulD, et al. Acrab-tolc efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19(1):210.
CrossRef
Google scholar
|
[122] |
WoodTK, KnabelSJ, KwanBW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 2013;79(23):7116-7121.
CrossRef
Google scholar
|
[123] |
ShahD, ZhangZ, KhodurskyAB, Kaldalu N, KurgK, LewisK. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53.
CrossRef
Google scholar
|
[124] |
BraunerA, Fridman O, GefenO, BalabanNQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14(5):320-330.
CrossRef
Google scholar
|
[125] |
WoodTK. Strategies for combating persister cell and biofilm infections. Microb Biotechnol. 2017;10(5):1054-1056.
CrossRef
Google scholar
|
[126] |
KwanBW, Chowdhury N, WoodTK. Combatting bacterial infections by killing persister cells with mitomycin c. Environ Microbiol. 2015;17(11):4406-4414.
CrossRef
Google scholar
|
[127] |
ChowdhuryN, WoodTL, Martínez-VázquezM, García-ContrerasR, WoodTK. DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng. 2016;113(9):1984-1992.
CrossRef
Google scholar
|
[128] |
ZhouL, ZhangY, GeY, ZhuX, PanJ. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front Microbiol. 2020;11:589640.
CrossRef
Google scholar
|
[129] |
RutherfordST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med. 2012;2(11):a012427.
CrossRef
Google scholar
|
[130] |
DaviesDG, ParsekMR, PearsonJP, Iglewski BH, CostertonJW, GreenbergEP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280(5361):295-298.
CrossRef
Google scholar
|
[131] |
SakuragiY, KolterR. Quorum-sensing regulation of the biofilm matrix genes (pel) of pseudomonas aeruginosa. J Bacteriol. 2007;189(14):5383-5386.
CrossRef
Google scholar
|
[132] |
WangY, BianZ, WangY. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol. 2022;106(19-20):6365-6381.
CrossRef
Google scholar
|
[133] |
OhMH, HanK. Abar is a luxr type regulator essential for motility and the formation of biofilm and pellicle in acinetobacter baumannii. Genes & Genomics. 2020;42(11):1339-1346.
CrossRef
Google scholar
|
[134] |
PanlilioH, RiceCV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng. 2021;118(6):2129-2141.
CrossRef
Google scholar
|
[135] |
RuhalR, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res. 2021;251:126829.
CrossRef
Google scholar
|
[136] |
DengW, LeiY, TangX, et al. Dnase inhibits early biofilm formation in pseudomonas aeruginosa-or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol. 2022;12:917038.
CrossRef
Google scholar
|
[137] |
LiJ, LeungSSY, ChungYL, et al. Hydrogel delivery of dnase I and liposomal vancomycin to eradicate fracture-related methicillin-resistant Staphylococcus aureus infection and support osteoporotic fracture healing. Acta Biomater. 2023;164:223-239.
CrossRef
Google scholar
|
[138] |
WangZ, Vanbever R, LorentJH, SolisJ, KnoopC, Van BambekeF. Repurposing dnase I and alginate lyase to degrade the biofilm matrix of dual-species biofilms of Staphylococcus aureus and pseudomonas aeruginosa grown in artificial sputum medium: in-vitro assessment of their activity in combination with broad-spectrum antibiotics. J Cyst Fibros. 2024;23(6):1146-1152.
CrossRef
Google scholar
|
[139] |
WangS, ZhaoY, BreslawecAP, et al. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes. 2023;9(1):63.
CrossRef
Google scholar
|
[140] |
FlemingD, ChahinL, RumbaughK. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother. 2017;61(2):e0199816.
CrossRef
Google scholar
|
[141] |
RedmanWK, WelchGS, RumbaughKP. Differential efficacy of glycoside hydrolases to disperse biofilms. Front Cell Infect Microbiol. 2020;10:379.
CrossRef
Google scholar
|
[142] |
LiuJ, MadecJY, Bousquet-MélouA, HaenniM, FerranAA. Destruction of Staphylococcus aureus biofilms by combining an antibiotic with subtilisin a or calcium gluconate. Sci Rep. 2021;11(1):6225.
CrossRef
Google scholar
|
[143] |
WeldrickPJ, Hardman MJ, PaunovVN. Enhanced clearing of wound-related pathogenic bacterial biofilms using protease-functionalized antibiotic nanocarriers. ACS Appl Mater Interfaces. 2019;11(47):43902-43919.
CrossRef
Google scholar
|
[144] |
Rubio-CanalejasA, Baelo A, HerberaS, Blanco-CabraN, Vukomanovic M, TorrentsE. 3d spatial organization and improved antibiotic treatment of a pseudomonas aeruginosa-Staphylococcus aureus wound biofilm by nanoparticle enzyme delivery. Front Microbiol. 2022;13:959156.
CrossRef
Google scholar
|
[145] |
CosgroveSE, Vigliani GA, CampionM, et al. Initial low-dose gentamicin forstaphylococcus aureusbacteremia and endocarditis is nephrotoxic. Clin Infect Dis. 2009;48(6):713-721.
CrossRef
Google scholar
|
[146] |
KooH, AllanRN, HowlinRP, Stoodley P, Hall-StoodleyL. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740-755.
CrossRef
Google scholar
|
[147] |
MaZ, LiJ, BaiY, ZhangY, SunH, ZhangX. A bacterial infection-microenvironment activated nanoplatform based on spiropyran-conjugated glycoclusters for imaging and eliminating of the biofilm. Chem Eng J. 2020;399:125787.
CrossRef
Google scholar
|
[148] |
HuangY, ZouL, WangJ, Jin Q, JiJ. Stimuli-responsive nanoplatforms for antibacterial applications. WIREs Nanomedicine and Nanobiotechnology. 2022;14(3):e1775.
CrossRef
Google scholar
|
[149] |
LvX, ZhangJ, YangD, et al. Recent advances in pH-responsive nanomaterials for anti-infective therapy. Journal of Materials Chemistry B. 2020;8(47):10700-10711.
CrossRef
Google scholar
|
[150] |
LiX, WuB, ChenH, et al. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. Journal of Materials Chemistry B. 2018;6(26):4274-4292.
CrossRef
Google scholar
|
[151] |
WeiT, YuQ, ChenH. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv Healthcare Mater. 2019;8(3):e1801381.
CrossRef
Google scholar
|
[152] |
SlombergDL, LuY, BroadnaxAD, Hunter RA, CarpenterAW, SchoenfischMH. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces. 2013;5(19):9322-9329.
CrossRef
Google scholar
|
[153] |
LeeNY, KoWC, HsuehPR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153.
CrossRef
Google scholar
|
[154] |
TalapkoJ, Matijević T, JuzbašićM, Antolović-PožgainA, ŠkrlecI. Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms. 2020;8(9):1400.
|
[155] |
KuangT, DengL, ShenS, et al. Nano-silver-modified polyphosphazene nanoparticles with different morphologies: design, synthesis, and evaluation of antibacterial activity. Chin Chem Lett. 2023;34(12):108584.
CrossRef
Google scholar
|
[156] |
SousaA, PhungAN, Škalko-BasnetN, ObuobiS. Smart delivery systems for microbial biofilm therapy: dissecting design, drug release and toxicological features. J Controlled Release. 2023;354:394-416.
CrossRef
Google scholar
|
[157] |
ZhaoR, FuC, WangZ, et al. A ph-responsive nanoparticle library with precise ph tunability by co-polymerization with non-ionizable monomers. Angew Chem Int Ed. 2022;61(19):e202200152.
CrossRef
Google scholar
|
[158] |
HeD, TanY, LiP, et al. Surface charge-convertible quaternary ammonium salt-based micelles for in vivo infection therapy. Chin Chem Lett. 2021;32(5):1743-1746.
CrossRef
Google scholar
|
[159] |
WangS, FangL, ZhouH, et al. Silica nanoparticles containing nano-silver and chlorhexidine respond to ph to suppress biofilm acids and modulate biofilms toward a non-cariogenic composition. Dent Mater. 2024;40(2):179-189.
CrossRef
Google scholar
|
[160] |
YeM, ZhaoY, WangY, et al. A dual-responsive antibiotic-loaded nanoparticle specifically binds pathogens and overcomes antimicrobial-resistant infections. Adv Mater. 2021;33(9):e2006772.
CrossRef
Google scholar
|
[161] |
ZhangP, WuS, LiJ, et al. Dual-sensitive antibacterial peptide nanoparticles prevent dental caries. Theranostics. 2022;12(10):4818-4833.
CrossRef
Google scholar
|
[162] |
LiangJ, LiuF, ZouJ, et al. Ph-responsive antibacterial resin adhesives for secondary caries inhibition. J Dent Res. 2020;99(12):1368-1376.
CrossRef
Google scholar
|
[163] |
CuiS, QiaoJ, XiongMP. Antibacterial and biofilm-eradicating activities of ph-responsive vesicles against pseudomonas aeruginosa. Mol Pharmaceutics. 2022;19(7):2406-2417.
CrossRef
Google scholar
|
[164] |
WangM, Muhammad T, GaoH, LiuJ, LiangH. Targeted ph-responsive chitosan nanogels with tanshinone iia for enhancing the antibacterial/anti-biofilm efficacy. Int J Biiol Macromol. 2023;237:124177.
CrossRef
Google scholar
|
[165] |
XuX, FanM, YuZ, et al. A removable photothermal antibacterial “warm paste” target for cariogenic bacteria. Chem Eng J. 2022;429:132491.
CrossRef
Google scholar
|
[166] |
PengX, HanQ, ZhouX, et al. Effect of ph-sensitive nanoparticles on inhibiting oral biofilms. Drug Delivery. 2022;29(1):561-573.
CrossRef
Google scholar
|
[167] |
XuY, YouY, YiL, et al. Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration. Bioactive Materials. 2023;20:418-433.
CrossRef
Google scholar
|
[168] |
LiX, LiW, LiK, et al. Albumin-coated ph-responsive dimeric prodrug-based nano-assemblies with high biofilm eradication capacity. Biomater Sci. 2023;11(3):1031-1041.
CrossRef
Google scholar
|
[169] |
KangX, YangX, BuF, et al. Gsh/ph cascade-responsive nanoparticles eliminate methicillin-resistant Staphylococcus aureus biofilm via synergistic photo-chemo therapy. ACS Appl Mater Interfaces. 2024;16(3):3202-3214.
CrossRef
Google scholar
|
[170] |
ChaiM, GaoY, LiuJ, et al. Polymyxin b-polysaccharide polyion nanocomplex with improved biocompatibility and unaffected antibacterial activity for acute lung infection management. Adv Healthcare Mater. 2020;9(3):e1901542.
CrossRef
Google scholar
|
[171] |
SonawaneSJ, Kalhapure RS, JadhavM, RambharoseS, Mocktar C, GovenderT. Ab2-type amphiphilic block copolymer containing a ph-cleavable hydrazone linkage for targeted antibiotic delivery. Int J Pharm. 2020;575:118948.
CrossRef
Google scholar
|
[172] |
MakhathiniSS, OmoloCA, GannimaniR, Mocktar C, GovenderT. Ph-responsive micelles from an oleic acid tail and propionic acid heads dendritic amphiphile for the delivery of antibiotics. J Pharm Sci. 2020;109(8):2594-2606.
CrossRef
Google scholar
|
[173] |
ChenJ, ShiX, ZhuY, et al. On-demand storage and release of antimicrobial peptides using pandora’s box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics. 2020;10(1):109-122.
CrossRef
Google scholar
|
[174] |
ZhaoZ, DingC, WangY, Tan H, LiJ. Ph-responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomater Sci. 2019;7(4):1643-1651.
CrossRef
Google scholar
|
[175] |
MittalM, Siddiqui MR, TranK, ReddySP, MalikAB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signaling. 2014;20(7):1126-1167.
CrossRef
Google scholar
|
[176] |
LinTI, HuangYF, LiuPY, et al. Pseudomonas aeruginosa infective endocarditis in patients who do not use intravenous drugs: analysis of risk factors and treatment outcomes. J Microbiol Immunol Infect. 2016;49(4):516-522.
CrossRef
Google scholar
|
[177] |
de Gracia LuxC, Joshi-Barr S, NguyenT, et al. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J Am Chem Soc. 2012;134(38):15758-15764.
CrossRef
Google scholar
|
[178] |
PeiP, SunC, TaoW, LiJ, YangX, Wang J. Ros-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74-82.
CrossRef
Google scholar
|
[179] |
YuJ, XuH, WeiJ, NiuL, ZhuH, JiangC. Bacteria-targeting nanoparticles with ros-responsive antibiotic release to eradicate biofilms and drug-resistant bacteria in endophthalmitis. Int J Nanomedicine. 2024;19:2939-2956.
CrossRef
Google scholar
|
[180] |
LiuY, LiY, ShiL. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J Controlled Release. 2021;329:1102-1116.
CrossRef
Google scholar
|
[181] |
LiY, LiuG, WangX, Hu J, LiuS. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angew Chem Int Ed. 2016;55(5):1760-1764.
CrossRef
Google scholar
|
[182] |
LiuY, LinA, LiuJ, et al. Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria. ACS Appl Mater Interfaces. 2019;11(30):26590-26606.
CrossRef
Google scholar
|
[183] |
InsuaI, LiamasE, ZhangZ, Peacock AFA, KrachlerAM, Fernandez-TrilloF. Enzyme-responsive polyion complex (pic) nanoparticles for the targeted delivery of antimicrobial polymers. Polym Chem. 2016;7(15):2684-2690.
CrossRef
Google scholar
|
[184] |
YangS, HanX, YangY, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces. 2018;10(17):14299-14311.
CrossRef
Google scholar
|
[185] |
SinghH, LiW, KazemianMR, et al. Lipase-responsive electrospun theranostic wound dressing for simultaneous recognition and treatment of wound infection. ACS Applied Bio Materials. 2019;2(5):2028-2036.
CrossRef
Google scholar
|
[186] |
XiongMH, LiYJ, BaoY, YangXZ, HuB, WangJ. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater. 2012;24(46):6175-6180.
CrossRef
Google scholar
|
[187] |
ZhangY, SunP, ZhangL, et al. Silver-infused porphyrinic metal-organic framework: surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv Funct Mater. 2019;29(11):1808594.
CrossRef
Google scholar
|
[188] |
WangY, ShuklaA. Bacteria-responsive biopolymer-coated nanoparticles for biofilm penetration and eradication. Biomater Sci. 2022;10(11):2831-2843.
CrossRef
Google scholar
|
[189] |
MohammedM, Ibrahim UH, AljoundiA, et al. Enzyme-responsive biomimetic solid lipid nanoparticles for antibiotic delivery against hyaluronidase-secreting bacteria. Int J Pharm. 2023;640:122967.
CrossRef
Google scholar
|
[190] |
ZhouS, YangD, YangD, et al. Injectable, self-healing and multiple responsive histamine modified hyaluronic acid hydrogels with potentialities in drug delivery, antibacterial and tissue engineering. Macromol Rapid Commun. 2023;44(3):e2200674.
CrossRef
Google scholar
|
[191] |
YaoQ, YeZ, SunL, et al. Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties. Journal of Materials Chemistry B. 2017;5(43):8532-8541.
CrossRef
Google scholar
|
[192] |
PatelA, Goswami S, HazarikaG, SivaprakasamS, Bhattacharjee S, MannaD. Sulfonium-cross-linked hyaluronic acid-based self-healing hydrogel: stimuli-responsive drug carrier with inherent antibacterial activity to counteract antibiotic-resistant bacteria. Adv Healthcare Mater. 2024;13(6):e2302790.
CrossRef
Google scholar
|
[193] |
ChenM, XieS, WeiJ, SongX, DingZ, Li X. Antibacterial micelles with vancomycin-mediated targeting and ph/lipase-triggered release of antibiotics. ACS Appl Mater Interfaces. 2018;10(43):36814-36823.
CrossRef
Google scholar
|
[194] |
JiH, DongK, YanZ, et al. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small. 2016;12(45):6200-6206.
CrossRef
Google scholar
|
[195] |
LinA, LiuY, ZhuX, et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano. 2019;13(12):13965-13984.
CrossRef
Google scholar
|
[196] |
SuY, ZhaoL, MengF, Wang Q, YaoY, LuoJ. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles. Colloids Surfaces B. 2017;152:238-244.
CrossRef
Google scholar
|
[197] |
KauserA, Parisini E, SuaratoG, CastagnaR. Light-based anti-biofilm and antibacterial strategies. Pharmaceutics. 2023;15(8):2106.
CrossRef
Google scholar
|
[198] |
LiuY, Bhattarai P, DaiZ, ChenX. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7):2053-2108.
CrossRef
Google scholar
|
[199] |
WangX, LiuY, HuY, et al. Hybrid micelles loaded with chemotherapeutic drug-photothermal agent realizing chemo-photothermal synergistic cancer therapy. Eur J Pharm Sci. 2022;175:106231.
CrossRef
Google scholar
|
[200] |
ZhuW, MeiJ, ZhangX, et al. Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated janus ion therapy. Adv Mater. 2022;34(51):e2207961.
CrossRef
Google scholar
|
[201] |
ShenZ, HeK, DingZ, Zhang M, YuY, HuJ. Visible-light-triggered self-reporting release of nitric oxide (no) for bacterial biofilm dispersal. Macromolecules. 2019;52(20):7668-7677.
CrossRef
Google scholar
|
[202] |
ZouL, WangH, HeB, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics. 2016;6(6):762-772.
CrossRef
Google scholar
|
[203] |
HwangE, JungHS. Organelle-targeted photothermal agents for cancer therapy. Chem Commun. 2021;57(63):7731-7742.
CrossRef
Google scholar
|
[204] |
ThoratND, Dworniczek E, BrennanG, et al. Photo-responsive functional gold nanocapsules for inactivation of community-acquired, highly virulent, multidrug-resistant mrsa. Journal of Materials Chemistry B. 2021;9(3):846-856.
CrossRef
Google scholar
|
[205] |
ZhangL, WangY, WangJ, et al. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection. ACS Appl Mater Interfaces. 2019;11(1):300-310.
CrossRef
Google scholar
|
[206] |
LiuW, PeiW, MoradiM, et al. Polyethyleneimine functionalized mesoporous magnetic nanoparticles with enhanced antibacterial and antibiofilm activity in an alternating magnetic field. ACS Appl Mater Interfaces. 2022;14(16):18794-18805.
CrossRef
Google scholar
|
[207] |
LiufuC, LiY, LinY, et al. Synergistic ultrasonic biophysical effect-responsive nanoparticles for enhanced gene delivery to ovarian cancer stem cells. Drug Delivery. 2020;27(1):1018-1033.
CrossRef
Google scholar
|
[208] |
YaoX, NiuX, MaK, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13(2):1602225.
CrossRef
Google scholar
|
[209] |
ÁlvarezE, Estévez M, Gallo-CordovaA, et al. Superparamagnetic iron oxide nanoparticles decorated mesoporous silica nanosystem for combined antibiofilm therapy. Pharmaceutics. 2022;14(1):163.
CrossRef
Google scholar
|
[210] |
KimJK, Uchiyama S, GongH, StreamA, ZhangL, NizetV. Engineered biomimetic platelet Membrane-Coated nanoparticles block Staphylococcus aureus cytotoxicity and protect against lethal systemic infection. Engineering. 2021;7(8):1149-1156.
CrossRef
Google scholar
|
[211] |
MaJ, JiangL, LiuG. Cell membrane-coated nanoparticles for the treatment of bacterial infection. WIREs Nanomedicine and Nanobiotechnology. 2022;14(5):e1825.
CrossRef
Google scholar
|
[212] |
JiangW, XuH, GaoZ, et al. Artificial neutrophils against vascular graft infection. Adv Sci. 2024;11(30):e2402768.
CrossRef
Google scholar
|
[213] |
AhmadI, NygrenE, KhalidF, Myint SL, UhlinBE. A cyclic-di-gmp signalling network regulates biofilm formation and surface associated motility of acinetobacter baumannii 17978. Sci Rep. 2020;10(1):1991.
CrossRef
Google scholar
|
[214] |
LinoCA, HarperJC, CarneyJP, Timlin JA. Delivering crispr: a review of the challenges and approaches. Drug Delivery. 2018;25(1):1234-1257.
CrossRef
Google scholar
|
[215] |
PandeyP, Vavilala SL. From gene editing to biofilm busting: Crispr-cas9 against antibiotic resistance-a review. Cell Biochem Biophys. 2024;82(2):549-560.
CrossRef
Google scholar
|
[216] |
NidhiS, AnandU, OleksakP, et al. Novel crispr-cas systems: an updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci. 2021;22(7):3327.
CrossRef
Google scholar
|
[217] |
BikardD, EulerCW, JiangW, et al. Exploiting crispr-cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnol. 2014;32(11):1146-1150.
CrossRef
Google scholar
|
[218] |
KimJS, ChoDH, ParkM, et al. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli harboring Extended-Spectrum beta-lactamases. J Microbiol Biotechnol. 2016;26(2):394-401.
CrossRef
Google scholar
|
[219] |
HaoM, HeY, ZhangH, et al. Crispr-cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2020;64(9):e0084320.
CrossRef
Google scholar
|
[220] |
YosefI, ManorM, KiroR, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A. 2015;112(23):7267-7272.
CrossRef
Google scholar
|
[221] |
ZuberiA, AhmadN, KhanAU. Crispri induced suppression of fimbriae gene (fimh) of a uropathogenic Escherichia coli: an approach to inhibit microbial biofilms. Front Immunol. 2017;8:1552.
CrossRef
Google scholar
|
[222] |
RoyR, TiwariM, DonelliG, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522-554.
CrossRef
Google scholar
|
[223] |
LeeJH, ParkJH, ChoHS, Joo SW, ChoMH, LeeJ. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 2013;29(5):491-499.
CrossRef
Google scholar
|
[224] |
RosmanCWK, van Dijl JM, SjollemaJ. Interactions between the foreign body reaction andstaphylococcus aureusbiomaterial-associated infection. winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol. 2022;48(5):624-640.
CrossRef
Google scholar
|
[225] |
Vazquez-RodriguezJA, Shaqour B, Guarch-PérezC, et al. A niclosamide-releasing hot-melt extruded catheter prevents Staphylococcus aureus experimental biomaterial-associated infection. Sci Rep. 2022;12(1):12329.
CrossRef
Google scholar
|
[226] |
IvanovicB, Trifunovic D, MaticS, PetrovicJ, SacicD, TadicM. Prosthetic valve endocarditis -a trouble or a challenge? J Cardiol. 2019;73(2):126-133.
CrossRef
Google scholar
|
[227] |
NataloniM, Pergolini M, RescignoG, MocchegianiR. Prosthetic valve endocarditis. Journal of Cardiovascular Medicine. 2010;11(12):869-883.
CrossRef
Google scholar
|
[228] |
ElensM, Dusoruth M, AstarciP, et al. Management and outcome of prosthetic vascular graft infections: a single center experience. Vasc Endovascular Surg. 2018;52(3):181-187.
CrossRef
Google scholar
|
[229] |
ZhaoC, ZhouL, ChiaoM, Yang W. Antibacterial hydrogel coating: strategies in surface chemistry. Adv Colloid Interface Sci. 2020;285:102280.
CrossRef
Google scholar
|
[230] |
FengJB, ChenR, LiB, JiangBH, LiB. The current trend of antibacterial prostheses and prosthetic surface coating technologies to prevent prosthetic joint infection for artificial joint replacement. J Biomater Tissue Eng. 2023;13(11):1046-1060.
CrossRef
Google scholar
|
[231] |
Andrade-Del OlmoJ, Ruiz-Rubio L, Pérez-AlvarezL, Sáez-MartínezV, Vilas-VilelaJL. Antibacterial coatings for improving the performance of biomaterials. Coatings. 2020;10(2):139.
CrossRef
Google scholar
|
[232] |
GallinganiT, RescaE, DominiciM, et al. A new strategy to prevent biofilm and clot formation in medical devices: the use of atmospheric non-thermal plasma assisted deposition of silver-based nanostructured coatings. PLoS One. 2023;18(2):e0282059.
CrossRef
Google scholar
|
[233] |
GbejuadeHO, Lovering AM, WebbJC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147-158.
CrossRef
Google scholar
|
[234] |
ZhuZ, GaoQ, LongZ, et al. Polydopamine/poly(sulfobetaine methacrylate) co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity. Bioactive materials. 2021;6(8):2546-2556.
CrossRef
Google scholar
|
[235] |
LiM, ZhangW, LiJ, et al. Zwitterionic polymers: addressing the barriers for drug delivery. Chin Chem Lett. 2023;34(11):108177.
CrossRef
Google scholar
|
[236] |
HaenleM, Fritsche A, ZietzC, et al. An extended spectrum bactericidal titanium dioxide (tio2) coating for metallic implants: in vitro effectiveness against mrsa and mechanical properties. J Mater Sci: Mater Med. 2011;22(2):381-387.
CrossRef
Google scholar
|
[237] |
ThurmanRB, GerbaCP, BittonG. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control. 1989;18(4):295-315.
CrossRef
Google scholar
|
[238] |
ObiweluozorFO, Emechebe GA, KimDW, et al. Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: a review. Cardiovasc Eng Technol. 2020;11(5):495-521.
CrossRef
Google scholar
|
[239] |
HetrickEM, ShinJH, PaulHS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009;30(14):2782-2789.
CrossRef
Google scholar
|
[240] |
FangFC. Perspectives series: host/pathogen interactions. mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99(12):2818-2825.
CrossRef
Google scholar
|
[241] |
HuH, WangL, DouJ, et al. Nitric oxide-releasing porous coating with antibacterial activity and blood compatibility. Langmuir. 2024;40(2):1286-1294.
CrossRef
Google scholar
|
[242] |
OzakiS, SaitoA, NakaminamiH, Ono M, NoguchiN, MotomuraN. Comprehensive evaluation of fibrin glue as a local drug-delivery system—efficacy and safety of sustained release of vancomycin by fibrin glue against local methicillin-resistant Staphylococcus aureus infection. J Artif Organs. 2014;17(1):42-49.
CrossRef
Google scholar
|
[243] |
DesaiM, Seifalian AM, HamiltonG. Role of prosthetic conduits in coronary artery bypass grafting. Eur J Cardiothorac Surg. 2011;40(2):394-398.
|
[244] |
SabeMA, Shrestha NK, MenonV. Contemporary drug treatment of infective endocarditis. Am J Cardiovasc Drugs. 2013;13(4):251-258.
CrossRef
Google scholar
|
[245] |
TayebjeeMH, JoyER, SandoeJA. Can implantable cardiac electronic device infections be defined as ‘early’ or ‘late’ based on the cause of infection? J Med Microbiol. 2013;62:1215-1219.
CrossRef
Google scholar
|
[246] |
Al MeslmaniBM, Mahmoud GF, SommerFO, LohoffMD, Bakowsky U. Multifunctional network-structured film coating for woven and knitted polyethylene terephthalate against cardiovascular graft-associated infections. Int J Pharm. 2015;485(1-2):270-276.
CrossRef
Google scholar
|
[247] |
SunF, HungHC, YanW, et al. Inhibition of oral biofilm formation by zwitterionic nonfouling coating. J Biomed Mater Res Part B Appl Biomater. 2021;109(10):1418-1425.
CrossRef
Google scholar
|
[248] |
WuY, RajuC, HouZ, et al. Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating. Biomaterials. 2021;273:120794.
CrossRef
Google scholar
|
[249] |
CloutierM, Mantovani D, RoseiF. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33(11):637-652.
CrossRef
Google scholar
|
[250] |
HanY, XuB, FuG, et al. A randomized trial comparing the neovas sirolimus-eluting bioresorbable scaffold and metallic everolimus-eluting stents. JACC: Cardiovascular Interventions. 2018;11(3):260-272.
CrossRef
Google scholar
|
[251] |
OkhovatianS, Shakeri A, Davenport HuyerL, RadisicM. Elastomeric polyesters in cardiovascular tissue engineering and organs-on-a-chip. Biomacromolecules. 2023;24(11):4511-4531.
CrossRef
Google scholar
|
[252] |
KirillovaA, YeazelTR, AsheghaliD, et al. Fabrication of biomedical scaffolds using biodegradable polymers. Chem Rev. 2021;121(18):11238-11304.
CrossRef
Google scholar
|
[253] |
QiuB, ChengQ, ChenR, Liu C, QinJ, JiangQ. Mussel-mimetic hydrogel coating with anticoagulant and antiinflammatory properties on a poly(lactic acid) vascular stent. Biomacromolecules. 2024;25:3098-3111.
CrossRef
Google scholar
|
[254] |
YuT, ZhengC, ChenX, et al. A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential. Acta Biomater. 2023;160:87-97.
CrossRef
Google scholar
|
[255] |
GaoQ, YuM, SuY, et al. Rationally designed dual functional block copolymers for bottlebrush-like coatings: in vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 2017;51:112-124.
CrossRef
Google scholar
|
[256] |
RosaliaM, Ravipati P, GrisoliP, et al. Tobramycin supplemented small-diameter vascular grafts for local antibiotic delivery: a preliminary formulation study. Int J Mol Sci. 2021;22(24):13557.
CrossRef
Google scholar
|
[257] |
MartinNK, Domínguez-Robles J, StewartSA, et al. Fused deposition modelling for the development of drug loaded cardiovascular prosthesis. Int J Pharm. 2021;595:120243.
CrossRef
Google scholar
|
[258] |
BenoitDSW, Sims Jr. KR, FraserD. Nanoparticles for oral biofilm treatments. ACS Nano. 2019;13(5):4869-4875.
CrossRef
Google scholar
|
[259] |
TasiaW, LeiC, CaoY, YeQ, HeY, XuC. Enhanced eradication of bacterial biofilms with dnase i-loaded silver-doped mesoporous silica nanoparticles. Nanoscale. 2020;12(4):2328-2332.
CrossRef
Google scholar
|
[260] |
WangY, YuanQ, FengW, et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ros-responsive nanoparticles. J Nanobiotechnology. 2019;17(1):103.
CrossRef
Google scholar
|
[261] |
TeaimaMH, Elasaly MK, OmarSA, El-NabarawiMA, Shoueir KR. Wound healing activities of polyurethane modified chitosan nanofibers loaded with different concentrations of linezolid in an experimental model of diabetes. J Drug Delivery Sci Technol. 2022;67:102982.
CrossRef
Google scholar
|
[262] |
RibeiroMC, CorreaVLR, SilvaFKL, et al. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. Eur J Pharm Sci. 2020;150:105330.
CrossRef
Google scholar
|
[263] |
GaoY, WangJ, ChaiM, et al. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano. 2020;14(5):5686-5699.
CrossRef
Google scholar
|
[264] |
HanJ, PomaA. Molecular targets for antibody-based anti-biofilm therapy in infective endocarditis. Polymers. 2022;14(15):3198.
CrossRef
Google scholar
|
/
〈 |
|
〉 |