The potency of aloe emodin-loaded nanoparticles in conjunction with IFN-γ for the pretreatment of mesenchymal stem cells with class II transactivator silence to alleviate severe acute pancreatitis

Yu Zou, Qin Qin, Xiaoshuang Song, Yuchuan Deng, Simeng Liu, Huimin Liu, Ailing Jiang, Mao Wang, Yiran Song, Dujiang Yang, Huimin Lu, Kun Jiang, Qian Yao, Yu Zheng

MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (1) : e70001.

PDF
MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (1) : e70001. DOI: 10.1002/mba2.70001
ORIGINAL ARTICLE

The potency of aloe emodin-loaded nanoparticles in conjunction with IFN-γ for the pretreatment of mesenchymal stem cells with class II transactivator silence to alleviate severe acute pancreatitis

Author information +
History +

Abstract

Mesenchymal stem cells (MSCs) have a moderate impact on the therapy of severe acute pancreatitis. This study seeks to improve the therapeutic effectiveness of MSCs. By preconditioning them via the upregulation of critical anti-inflammatory molecules, so diminishing immune rejection, we are creating a path for more effective treatments. Aloe emodin (AE), a natural active monomer with low-toxicity, in conjunction with interferon gamma (IFN-γ) (I-AE), markedly upregulated immunosuppressive molecules indoleamine 2,3-dioxygenase and programmed cell death-Ligand 1 in MSCs, thereby pharmacologically modulating the inhibition of CD4 – T cell activation in vitro effectively. Transient transfection of small interfering RNA silenced the class II transactivator (CIITA) gene expression of umbilical cord mesenchymal stem cells (UMSCs) interfering with human leukocyte antigen class II expression to avert immune rejection. AE-loaded nanoparticles efficiently maintained proliferation inhibition of MSCs within a manageable range by sustained release. UMSCs pretreated by I-AE with CIITA silencing preserved pancreatic structure as evidenced by diminished acinar cell death, reduced pancreatic edema and inflammation, and significantly lowered serum amylase levels The encouraging potential of UMSCs with CIITA gene silencing combined with AE and IFN-γ pretreatment offers optimism for clinical application in pancreatitis therapy.

Keywords

aloe emodin/IFN-γ combination / histocompatibility complex II expression / mesenchymal stem cells / nanoparticles / severe acute pancreatitis

Cite this article

Download citation ▾
Yu Zou, Qin Qin, Xiaoshuang Song, Yuchuan Deng, Simeng Liu, Huimin Liu, Ailing Jiang, Mao Wang, Yiran Song, Dujiang Yang, Huimin Lu, Kun Jiang, Qian Yao, Yu Zheng. The potency of aloe emodin-loaded nanoparticles in conjunction with IFN-γ for the pretreatment of mesenchymal stem cells with class II transactivator silence to alleviate severe acute pancreatitis. MEDCOMM - Biomaterials and Applications, 2025, 4(1): e70001 https://doi.org/10.1002/mba2.70001

References

[1]
ZeremE. Treatment of severe acute pancreatitis and its complications. World J Gastroenterol. 2014;20(38):13879-13892.
CrossRef Google scholar
[2]
BoxhoornL, Voermans RP, BouwenseSA, et al. Acute pancreatitis. Lancet. 2020;396(10252):726-734.
CrossRef Google scholar
[3]
BuxbaumJL, Quezada M, DaB, et al. Early aggressive hydration hastens clinical improvement in mild acute pancreatitis. Am J Gastroenterol. 2017;112(5):797-803.
CrossRef Google scholar
[4]
YaoH, HeC, DengL, Liao G. Enteral versus parenteral nutrition in critically ill patients with severe pancreatitis: a meta-analysis. Eur J Clin Nutr. 2018;72(1):66-68.
CrossRef Google scholar
[5]
WartmannT, Mayerle J, KähneT, et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology. 2010;138(2):726-737.
CrossRef Google scholar
[6]
SadowskiSM. Epidural anesthesia improves pancreatic perfusion and decreases the severity of acute pancreatitis. World J Gastroenterol. 2015;21(43):12448-12456.
CrossRef Google scholar
[7]
TanZH, YuLH, WeiHL, Liu GT. Scutellarin protects against lipopolysaccharide-induced acute lung injury via inhibition of NF-κB activation in mice. J Asian Nat Prod Res. 2010;12(3):175-184.
CrossRef Google scholar
[8]
HanqingC, XipingZ, JingminO, Jun J, DijiongW. Research on scutellarin parenteral solution’s protective effects in rats with severe acute pancreatitis and multiple organ injuries. Inflammation. 2012;35(3):1005-1014.
CrossRef Google scholar
[9]
ShiY, WangY, LiQ, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493-507.
CrossRef Google scholar
[10]
FontaineMJ, ShihH, SchäferR, PittengerMF. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev. 2016;30(1):37-43.
CrossRef Google scholar
[11]
JiangW, XuJ. Immune modulation by mesenchymal stem cells. Cell Proliferation. 2020;53(1):e12712.
CrossRef Google scholar
[12]
AndrzejewskaA, Dabrowska S, LukomskaB, JanowskiM. Mesenchymal stem cells for neurological disorders. Adv Sci. 2021;8(7):2002944.
CrossRef Google scholar
[13]
Barrère-LemaireS, VincentA, Jorgensen C, PiotC, NargeotJ, DjouadF. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev. 2024;104(2):659-725.
CrossRef Google scholar
[14]
SarmahD, DattaA, KaurH, et al. Sirtuin-1-mediated NF-κB pathway modulation to mitigate inflammasome signaling and cellular apoptosis is one of the neuroprotective effects of intra-arterial mesenchymal stem cell therapy following ischemic stroke. Stem Cell Rev Rep. 2022;18(2):821-838.
CrossRef Google scholar
[15]
ZhaoY, YangX, LiS, et al. sTNFRII-Fc modification protects human UC-MSCs against apoptosis/autophagy induced by TNF-α and enhances their efficacy in alleviating inflammatory arthritis. Stem Cell Res Ther. 2021;12(1):535.
CrossRef Google scholar
[16]
VigoT, Procaccini C, FerraraG, et al. IFN-γ orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. J Allergy Clin Immunol. 2017;139(5):1667-1676.
CrossRef Google scholar
[17]
LiuD, SongG, MaZ, et al. Resveratrol improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells in rats with severe acute pancreatitis. Int Immunopharmacol. 2020;80:106128.
CrossRef Google scholar
[18]
SilvaLHA, Antunes MA, Dos SantosCC, WeissDJ, CruzFF, RoccoPRM. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9(1):45.
CrossRef Google scholar
[19]
HeX, YangY, YaoM, et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Ann Rheum Dis. 2020;79(10):1298-1304.
CrossRef Google scholar
[20]
LiuXB, JiangJM, HuangZW, et al. Clinical study on the treatment of severe acute pancreatitis by integrated traditional Chinese medicine and Western medicine. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004;35(2):204-208.
[21]
WenY, HanC, LiuT, et al. Chaiqin chengqi decoction alleviates severity of acute pancreatitis via inhibition of TLR4 and NLRP3 inflammasome: identification of bioactive ingredients via pharmacological sub-network analysis and experimental validation. Phytomedicine. 2020;79:153328.
CrossRef Google scholar
[22]
SuJ, ChenX, HuangY, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 2014;21(3):388-396.
CrossRef Google scholar
[23]
DaviesLC, Heldring N, KadriN, Le BlancK. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017;35(3):766-776.
CrossRef Google scholar
[24]
MeiselR, ZibertA, LaryeaM, Göbel U, DäubenerW, DillooD. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619-4621.
CrossRef Google scholar
[25]
FallarinoF, Grohmann U, PuccettiP. Indoleamine 2, 3-dioxygenase: from catalyst to signaling function. Eur J Immunol. 2012;42(8):1932-1937.
CrossRef Google scholar
[26]
DongH, StromeSE, SalomaoDR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793-800.
CrossRef Google scholar
[27]
LiM, SoderR, AbhyankarS, et al. WJMSC-derived small extracellular vesicle enhance T cell suppression through PD-L1. J Extracell Vesicles. 2021;10(4):e12067.
CrossRef Google scholar
[28]
GianchecchiE, Delfino DV, FierabracciA. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev. 2013;12(11):1091-1100.
CrossRef Google scholar
[29]
ZhengW, WangC, DingR, Huang Y, LiY, LuY. Triptolide-loaded nanoparticles targeting breast cancer in vivo with reduced toxicity. Int J Pharm. 2019;572:118721.
CrossRef Google scholar
[30]
HuangY, XieP, YangST, et al. Carbon nanoparticles suspension injection for the delivery of doxorubicin: comparable efficacy and reduced toxicity. Mater Sci Eng C. 2018;92:416-423.
CrossRef Google scholar
[31]
RodríguezT, Méndez R, Del CampoA, et al. Patterns of constitutive and IFN-γ inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics. 2007;59(2):123-133.
CrossRef Google scholar
[32]
van den ElsenPJ, van der Stoep N, YazawaT. Class II transactivator (CIITA) deficiency in tumor cells: complicated mechanisms or not? Am J Pathol. 2003;163(1):373-376. Author reply 375-376.
CrossRef Google scholar
[33]
OdebergJ, Plachter B, BrandénL, Söderberg-NauclérC. Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR α-chain. Blood. 2003;101(12):4870-4877.
CrossRef Google scholar
[34]
Stumptner-CuveletteP, Morchoisne S, DugastM, et al. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci. 2001;98(21):12144-12149.
CrossRef Google scholar
[35]
ReithW, LeibundGut-Landmann S, WaldburgerJM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol. 2005;5(10):793-806.
CrossRef Google scholar
[36]
ReithW, MachB. The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol. 2001;19:331-373.
CrossRef Google scholar
[37]
DeSandroA, Nagarajan UM, BossJM. The bare lymphocyte syndrome: molecular clues to the transcriptional regulation of major histocompatibility complex class II genes. Am J Hum Genet. 1999;65(2):279-286.
CrossRef Google scholar
[38]
ChangCH, Guerder S, HongSC, van EwijkW, Flavell RA. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity. 1996;4(2):167-178.
CrossRef Google scholar
[39]
ChenH, LiY, LinX, et al. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol Res. 2015;48:59.
CrossRef Google scholar
[40]
ColungaA, HirataR, RussellD. Generation of HLA class II deficient human embryonic stem cells by AAV mediated knockout of RFXANK. Mol Ther. 2014;22:S14.
CrossRef Google scholar
[41]
MunnDH, Shafizadeh E, AttwoodJT, BondarevI, Pashine A, MellorAL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363-1372.
CrossRef Google scholar
[42]
BöttcherM, Hofmann AD, BrunsH, et al. Mesenchymal stromal cells disrupt mTOR-signaling and aerobic glycolysis during T-cell activation. Stem Cells. 2016;34(2):516-521.
CrossRef Google scholar
[43]
AugelloA, TassoR, NegriniSM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482-1490.
CrossRef Google scholar
[44]
PlataniasLC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375-386.
CrossRef Google scholar
[45]
LiS, YangK, CaoW, et al. Tanshinone IIA enhances the therapeutic efficacy of mesenchymal stem cells derived exosomes in myocardial ischemia/reperfusion injury via up-regulating miR-223-5p. J Control Release. 2023;358:13-26.
CrossRef Google scholar
[46]
LinCW, WuCF, HsiaoNW, et al. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. Int J Antimicrob Agents. 2008;32(4):355-359.
CrossRef Google scholar
[47]
WanL, WangZ, ZhouL. Protecting effects of emodin on multiorgan failure of rats with severe acute pancreatitis. Pancreas. 2009;38(7):835-836.
CrossRef Google scholar
[48]
XiaXM, WangFY, WangZK, Wan HJ, XuWA, LuH. Emodin enhances alveolar epithelial barrier function in rats with experimental acute pancreatitis. World J Gastroenterol. 2010;16(24):2994-3001.
CrossRef Google scholar
[49]
LiZ, XiaX, ZhangS, Zhang A, BoW, ZhouR. Up-regulation of toll-like receptor 4 was suppressed by emodin and baicalin in the setting of acute pancreatitis. Biomed Pharmacother = Biomed Pharmacother. 2009;63(2):120-128.
CrossRef Google scholar
[50]
CaoYJ, PuZJ, TangYP, et al. Advances in bio-active constituents, pharmacology and clinical applications of rhubarb. Chin Med. 2017;12:36.
CrossRef Google scholar
[51]
KusskeAM, Rongione AJ, AshleySW, McFaddenDW, ReberHA. Interleukin-10 prevents death in lethal necrotizing pancreatitis in mice. Surgery. 1996;120(2):284-289. Discussion 289.
CrossRef Google scholar
[52]
OsmanMO, Kristensen JU, JacobsenNO, et al. A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits. Gut. 1998;43(2):232-239.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). MedComm - Biomaterials and Applications published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
PDF

Accesses

Citations

Detail

Sections
Recommended

/