
The potency of aloe emodin-loaded nanoparticles in conjunction with IFN-γ for the pretreatment of mesenchymal stem cells with class II transactivator silence to alleviate severe acute pancreatitis
Yu Zou, Qin Qin, Xiaoshuang Song, Yuchuan Deng, Simeng Liu, Huimin Liu, Ailing Jiang, Mao Wang, Yiran Song, Dujiang Yang, Huimin Lu, Kun Jiang, Qian Yao, Yu Zheng
MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (1) : e70001.
The potency of aloe emodin-loaded nanoparticles in conjunction with IFN-γ for the pretreatment of mesenchymal stem cells with class II transactivator silence to alleviate severe acute pancreatitis
Mesenchymal stem cells (MSCs) have a moderate impact on the therapy of severe acute pancreatitis. This study seeks to improve the therapeutic effectiveness of MSCs. By preconditioning them via the upregulation of critical anti-inflammatory molecules, so diminishing immune rejection, we are creating a path for more effective treatments. Aloe emodin (AE), a natural active monomer with low-toxicity, in conjunction with interferon gamma (IFN-γ) (I-AE), markedly upregulated immunosuppressive molecules indoleamine 2,3-dioxygenase and programmed cell death-Ligand 1 in MSCs, thereby pharmacologically modulating the inhibition of CD4 – T cell activation in vitro effectively. Transient transfection of small interfering RNA silenced the class II transactivator (CIITA) gene expression of umbilical cord mesenchymal stem cells (UMSCs) interfering with human leukocyte antigen class II expression to avert immune rejection. AE-loaded nanoparticles efficiently maintained proliferation inhibition of MSCs within a manageable range by sustained release. UMSCs pretreated by I-AE with CIITA silencing preserved pancreatic structure as evidenced by diminished acinar cell death, reduced pancreatic edema and inflammation, and significantly lowered serum amylase levels The encouraging potential of UMSCs with CIITA gene silencing combined with AE and IFN-γ pretreatment offers optimism for clinical application in pancreatitis therapy.
aloe emodin/IFN-γ combination / histocompatibility complex II expression / mesenchymal stem cells / nanoparticles / severe acute pancreatitis
[1] |
ZeremE. Treatment of severe acute pancreatitis and its complications. World J Gastroenterol. 2014;20(38):13879-13892.
CrossRef
Google scholar
|
[2] |
BoxhoornL, Voermans RP, BouwenseSA, et al. Acute pancreatitis. Lancet. 2020;396(10252):726-734.
CrossRef
Google scholar
|
[3] |
BuxbaumJL, Quezada M, DaB, et al. Early aggressive hydration hastens clinical improvement in mild acute pancreatitis. Am J Gastroenterol. 2017;112(5):797-803.
CrossRef
Google scholar
|
[4] |
YaoH, HeC, DengL, Liao G. Enteral versus parenteral nutrition in critically ill patients with severe pancreatitis: a meta-analysis. Eur J Clin Nutr. 2018;72(1):66-68.
CrossRef
Google scholar
|
[5] |
WartmannT, Mayerle J, KähneT, et al. Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology. 2010;138(2):726-737.
CrossRef
Google scholar
|
[6] |
SadowskiSM. Epidural anesthesia improves pancreatic perfusion and decreases the severity of acute pancreatitis. World J Gastroenterol. 2015;21(43):12448-12456.
CrossRef
Google scholar
|
[7] |
TanZH, YuLH, WeiHL, Liu GT. Scutellarin protects against lipopolysaccharide-induced acute lung injury via inhibition of NF-κB activation in mice. J Asian Nat Prod Res. 2010;12(3):175-184.
CrossRef
Google scholar
|
[8] |
HanqingC, XipingZ, JingminO, Jun J, DijiongW. Research on scutellarin parenteral solution’s protective effects in rats with severe acute pancreatitis and multiple organ injuries. Inflammation. 2012;35(3):1005-1014.
CrossRef
Google scholar
|
[9] |
ShiY, WangY, LiQ, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493-507.
CrossRef
Google scholar
|
[10] |
FontaineMJ, ShihH, SchäferR, PittengerMF. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev. 2016;30(1):37-43.
CrossRef
Google scholar
|
[11] |
JiangW, XuJ. Immune modulation by mesenchymal stem cells. Cell Proliferation. 2020;53(1):e12712.
CrossRef
Google scholar
|
[12] |
AndrzejewskaA, Dabrowska S, LukomskaB, JanowskiM. Mesenchymal stem cells for neurological disorders. Adv Sci. 2021;8(7):2002944.
CrossRef
Google scholar
|
[13] |
Barrère-LemaireS, VincentA, Jorgensen C, PiotC, NargeotJ, DjouadF. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev. 2024;104(2):659-725.
CrossRef
Google scholar
|
[14] |
SarmahD, DattaA, KaurH, et al. Sirtuin-1-mediated NF-κB pathway modulation to mitigate inflammasome signaling and cellular apoptosis is one of the neuroprotective effects of intra-arterial mesenchymal stem cell therapy following ischemic stroke. Stem Cell Rev Rep. 2022;18(2):821-838.
CrossRef
Google scholar
|
[15] |
ZhaoY, YangX, LiS, et al. sTNFRII-Fc modification protects human UC-MSCs against apoptosis/autophagy induced by TNF-α and enhances their efficacy in alleviating inflammatory arthritis. Stem Cell Res Ther. 2021;12(1):535.
CrossRef
Google scholar
|
[16] |
VigoT, Procaccini C, FerraraG, et al. IFN-γ orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. J Allergy Clin Immunol. 2017;139(5):1667-1676.
CrossRef
Google scholar
|
[17] |
LiuD, SongG, MaZ, et al. Resveratrol improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells in rats with severe acute pancreatitis. Int Immunopharmacol. 2020;80:106128.
CrossRef
Google scholar
|
[18] |
SilvaLHA, Antunes MA, Dos SantosCC, WeissDJ, CruzFF, RoccoPRM. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther. 2018;9(1):45.
CrossRef
Google scholar
|
[19] |
HeX, YangY, YaoM, et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Ann Rheum Dis. 2020;79(10):1298-1304.
CrossRef
Google scholar
|
[20] |
LiuXB, JiangJM, HuangZW, et al. Clinical study on the treatment of severe acute pancreatitis by integrated traditional Chinese medicine and Western medicine. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004;35(2):204-208.
|
[21] |
WenY, HanC, LiuT, et al. Chaiqin chengqi decoction alleviates severity of acute pancreatitis via inhibition of TLR4 and NLRP3 inflammasome: identification of bioactive ingredients via pharmacological sub-network analysis and experimental validation. Phytomedicine. 2020;79:153328.
CrossRef
Google scholar
|
[22] |
SuJ, ChenX, HuangY, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 2014;21(3):388-396.
CrossRef
Google scholar
|
[23] |
DaviesLC, Heldring N, KadriN, Le BlancK. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017;35(3):766-776.
CrossRef
Google scholar
|
[24] |
MeiselR, ZibertA, LaryeaM, Göbel U, DäubenerW, DillooD. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619-4621.
CrossRef
Google scholar
|
[25] |
FallarinoF, Grohmann U, PuccettiP. Indoleamine 2, 3-dioxygenase: from catalyst to signaling function. Eur J Immunol. 2012;42(8):1932-1937.
CrossRef
Google scholar
|
[26] |
DongH, StromeSE, SalomaoDR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793-800.
CrossRef
Google scholar
|
[27] |
LiM, SoderR, AbhyankarS, et al. WJMSC-derived small extracellular vesicle enhance T cell suppression through PD-L1. J Extracell Vesicles. 2021;10(4):e12067.
CrossRef
Google scholar
|
[28] |
GianchecchiE, Delfino DV, FierabracciA. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev. 2013;12(11):1091-1100.
CrossRef
Google scholar
|
[29] |
ZhengW, WangC, DingR, Huang Y, LiY, LuY. Triptolide-loaded nanoparticles targeting breast cancer in vivo with reduced toxicity. Int J Pharm. 2019;572:118721.
CrossRef
Google scholar
|
[30] |
HuangY, XieP, YangST, et al. Carbon nanoparticles suspension injection for the delivery of doxorubicin: comparable efficacy and reduced toxicity. Mater Sci Eng C. 2018;92:416-423.
CrossRef
Google scholar
|
[31] |
RodríguezT, Méndez R, Del CampoA, et al. Patterns of constitutive and IFN-γ inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics. 2007;59(2):123-133.
CrossRef
Google scholar
|
[32] |
van den ElsenPJ, van der Stoep N, YazawaT. Class II transactivator (CIITA) deficiency in tumor cells: complicated mechanisms or not? Am J Pathol. 2003;163(1):373-376. Author reply 375-376.
CrossRef
Google scholar
|
[33] |
OdebergJ, Plachter B, BrandénL, Söderberg-NauclérC. Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR α-chain. Blood. 2003;101(12):4870-4877.
CrossRef
Google scholar
|
[34] |
Stumptner-CuveletteP, Morchoisne S, DugastM, et al. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci. 2001;98(21):12144-12149.
CrossRef
Google scholar
|
[35] |
ReithW, LeibundGut-Landmann S, WaldburgerJM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol. 2005;5(10):793-806.
CrossRef
Google scholar
|
[36] |
ReithW, MachB. The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol. 2001;19:331-373.
CrossRef
Google scholar
|
[37] |
DeSandroA, Nagarajan UM, BossJM. The bare lymphocyte syndrome: molecular clues to the transcriptional regulation of major histocompatibility complex class II genes. Am J Hum Genet. 1999;65(2):279-286.
CrossRef
Google scholar
|
[38] |
ChangCH, Guerder S, HongSC, van EwijkW, Flavell RA. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity. 1996;4(2):167-178.
CrossRef
Google scholar
|
[39] |
ChenH, LiY, LinX, et al. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol Res. 2015;48:59.
CrossRef
Google scholar
|
[40] |
ColungaA, HirataR, RussellD. Generation of HLA class II deficient human embryonic stem cells by AAV mediated knockout of RFXANK. Mol Ther. 2014;22:S14.
CrossRef
Google scholar
|
[41] |
MunnDH, Shafizadeh E, AttwoodJT, BondarevI, Pashine A, MellorAL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363-1372.
CrossRef
Google scholar
|
[42] |
BöttcherM, Hofmann AD, BrunsH, et al. Mesenchymal stromal cells disrupt mTOR-signaling and aerobic glycolysis during T-cell activation. Stem Cells. 2016;34(2):516-521.
CrossRef
Google scholar
|
[43] |
AugelloA, TassoR, NegriniSM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482-1490.
CrossRef
Google scholar
|
[44] |
PlataniasLC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375-386.
CrossRef
Google scholar
|
[45] |
LiS, YangK, CaoW, et al. Tanshinone IIA enhances the therapeutic efficacy of mesenchymal stem cells derived exosomes in myocardial ischemia/reperfusion injury via up-regulating miR-223-5p. J Control Release. 2023;358:13-26.
CrossRef
Google scholar
|
[46] |
LinCW, WuCF, HsiaoNW, et al. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. Int J Antimicrob Agents. 2008;32(4):355-359.
CrossRef
Google scholar
|
[47] |
WanL, WangZ, ZhouL. Protecting effects of emodin on multiorgan failure of rats with severe acute pancreatitis. Pancreas. 2009;38(7):835-836.
CrossRef
Google scholar
|
[48] |
XiaXM, WangFY, WangZK, Wan HJ, XuWA, LuH. Emodin enhances alveolar epithelial barrier function in rats with experimental acute pancreatitis. World J Gastroenterol. 2010;16(24):2994-3001.
CrossRef
Google scholar
|
[49] |
LiZ, XiaX, ZhangS, Zhang A, BoW, ZhouR. Up-regulation of toll-like receptor 4 was suppressed by emodin and baicalin in the setting of acute pancreatitis. Biomed Pharmacother = Biomed Pharmacother. 2009;63(2):120-128.
CrossRef
Google scholar
|
[50] |
CaoYJ, PuZJ, TangYP, et al. Advances in bio-active constituents, pharmacology and clinical applications of rhubarb. Chin Med. 2017;12:36.
CrossRef
Google scholar
|
[51] |
KusskeAM, Rongione AJ, AshleySW, McFaddenDW, ReberHA. Interleukin-10 prevents death in lethal necrotizing pancreatitis in mice. Surgery. 1996;120(2):284-289. Discussion 289.
CrossRef
Google scholar
|
[52] |
OsmanMO, Kristensen JU, JacobsenNO, et al. A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits. Gut. 1998;43(2):232-239.
CrossRef
Google scholar
|
/
〈 |
|
〉 |