Research progress of hydrogels in the prevention of pelvic inflammatory disease

Yile Xiao , Teng Ma , Haoming Wu , Qiao Su , Yayu Zhou , Bingnan Zhou , Keyi Yang , Zhengguang Pu , Wanyue Feng , Xin Yong , Huili Zhu , Xulin Hu

MEDCOMM - Biomaterials and Applications ›› 2024, Vol. 3 ›› Issue (4) : e100

PDF
MEDCOMM - Biomaterials and Applications ›› 2024, Vol. 3 ›› Issue (4) : e100 DOI: 10.1002/mba2.100
REVIEW ARTICLE

Research progress of hydrogels in the prevention of pelvic inflammatory disease

Author information +
History +
PDF

Abstract

Pelvic inflammatory disease (PID) is a critical global health concern with the potential to lead to adverse outcomes, including infertility and chronic pelvic pain. Since PID is often caused by ascending vaginal infections or urinary tract infections, understanding the treatment of both is critical to preventing PID. Meanwhile, the emergence of drug-resistant and persistently infected strains poses a growing challenge. This review discusses current clinical treatments for the prevention of PID from the physiologic basis of PID, as well as summarizes the advantages and research progress of hydrogels in the prevention of PID. In contrast to conventional treatments, hydrogels serve as excellent vehicles for vaginal drug delivery, maintaining the presence of the drug at the target site and controlling its release. In the context of urinary tract infections (UTIs), hydrogels are employed primarily as coatings on catheters to prevent and treat catheter-associated UTIs. Finally, this review summarizes the limitations of hydrogels in PID prevention and future directions for development with the aim of elucidating avenues for clinical treatment of PID and informing further research.

Keywords

drug delivery systems / hydrogels / pelvic inflammatory disease / urinary tract infections / vaginal infections

Cite this article

Download citation ▾
Yile Xiao, Teng Ma, Haoming Wu, Qiao Su, Yayu Zhou, Bingnan Zhou, Keyi Yang, Zhengguang Pu, Wanyue Feng, Xin Yong, Huili Zhu, Xulin Hu. Research progress of hydrogels in the prevention of pelvic inflammatory disease. MEDCOMM - Biomaterials and Applications, 2024, 3(4): e100 DOI:10.1002/mba2.100

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrunhamRC, Gottlieb SL, PaavonenJ. Pelvic inflammatory disease. N Engl J Med. 2015;372(21):2039-2048.

[2]

KiviatNB, Wølner-Hanssen P, EschenbachDA, et al. Endometrial histopathology in patients with culture-proved upper genital tract infection and laparoscopically diagnosed acute salpingitis. Am J Surg Pathol. 1990;14(2):167-175.

[3]

DarvilleT. Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways. J Infect Dis. 2021;224(12, suppl 2):39.

[4]

WiesenfeldHC, Hillier SL, MeynLA, AmorteguiAJ, SweetRL. Subclinical pelvic inflammatory disease and infertility. Obstet Gynecol. 2012;120(1):37-43.

[5]

CatesW Jr, Joesoef MR, GoldmanMB. Atypical pelvic inflammatory disease: can we identify clinical predictors? Am J Obstet Gynecol. 1993;169(2, pt 1):341-346.

[6]

HillierSL, Bernstein KT, AralS. A review of the challenges and complexities in the diagnosis, etiology, epidemiology, and pathogenesis of pelvic inflammatory disease. J Infect Dis. 2021;224(12, suppl 2):23.

[7]

HeD, WangT, RenW. Global burden of pelvic inflammatory disease and ectopic pregnancy from 1990 to 2019. BMC Public Health. 2023;23:1894.

[8]

KreiselK, Torrone E, BernsteinK, HongJ, Gorwitz R. Prevalence of pelvic inflammatory disease in sexually experienced women of reproductive age—United States, 2013–2014. MMWR Morb Mortal Wkly Rep. 2017;66(3):80-83.

[9]

SimmsI, Stephenson JM. Pelvic inflammatory disease epidemiology: what do we know and what do we need to know? Sex Transm Infect. 2000;76(2):80-87.

[10]

HaggertyCL, Peipert JF, WeitzenS, et al. Predictors of chronic pelvic pain in an urban population of women with symptoms and signs of pelvic inflammatory disease. Sex Transm Dis. 2005;32(5):293-299.

[11]

SavarisRF, Fuhrich DG, MaissiatJ, DuarteRV, RossJ. Antibiotic therapy for pelvic inflammatory disease. Cochrane Database Syst Rev. 2020;8(8):010285.

[12]

JonssonS, Jonsson H, LundinE, HäggströmC, Idahl A. Pelvic inflammatory disease and risk of epithelial ovarian cancer: a national population-based case-control study in Sweden. Am J Obstet Gynecol. 2024;230(1):75.

[13]

ZhangYS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356(6337):eaaf3627.

[14]

TangY, XuH, WangX, et al. Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnology. 2023;21:300.

[15]

PeppasNA, HiltJZ, KhademhosseiniA, LangerR. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345-1360.

[16]

ZhongR, Talebian S, MendesBB, et al. Hydrogels for RNA delivery. Nat Mater. 2023;22(7):818-831.

[17]

TongZ, JinL, OliveiraJM, et al. Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioact Mater. 2021;6(5):1375-1387.

[18]

SeliktarD. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-1128.

[19]

PitorreM, Gondé H, HauryC, et al. Recent advances in nanocarrier-loaded gels: which drug delivery technologies against which diseases? J Control Release. 2017;266:140-155.

[20]

DuarteR, Fuhrich D, RossJD. A review of antibiotic therapy for pelvic inflammatory disease. Int J Antimicro Ag. 2015;46(3):272-277.

[21]

CookMT, BrownMB. Polymeric gels for intravaginal drug delivery. J Control Release. 2018;270:145-157.

[22]

YeungJ, PaulsRN. Anatomy of the vulva and the female sexual response. Obstet Gynecol Clin North Am. 2016;43(1):27-44.

[23]

Dos SantosAM, Carvalho SG, AraujoVHS, CarvalhoGC, Gremião MPD, ChorilliM. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm. 2020;590:119867.

[24]

SpenceD, Melville C. Vaginal discharge. BMJ. 2007;335(7630):1147-1151.

[25]

MuznyCA, Łaniewski P, SchwebkeJR, Herbst-KralovetzMM. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis. 2020;33(1):59-65.

[26]

MuznyCA, Blanchard E, TaylorCM, et al. Identification of key bacteria involved in the induction of incident bacterial vaginosis: a prospective study. J Infect Dis. 2018;218(6):966-978.

[27]

SrinivasanS, Hoffman NG, MorganMT, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One. 2012;7(6):e37818.

[28]

HillGB. The microbiology of bacterial vaginosis. Am J Obstet Gynecol. 1993;169(2):450-454.

[29]

Palmeira-de-OliveiraR, Palmeira-de-Oliveira A, Martinez-de-OliveiraJ. New strategies for local treatment of vaginal infections. Adv Drug Deliv Rev. 2015;92:105-122.

[30]

JavedA, Parvaiz F, ManzoorS. Bacterial vaginosis: an insight into the prevalence, alternative treatments regimen and it’s associated resistance patterns. Microb Pathog. 2019;127:21-30.

[31]

AldunateM, Srbinovski D, HearpsAC, et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front Physiol. 2015;6:164.

[32]

Van De WijgertJH, Morrison CS, CornelissePG, et al. Bacterial vaginosis and vaginal yeast, but not vaginal cleansing, increase HIV-1 acquisition in African women. J Acquir Immune Defic Syndr. 2008;48(2):203-210.

[33]

HayPE, LamontRF, Taylor-RobinsonD, MorganDJ, IsonC, PearsonJ. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ. 1994;308(6924):295-298.

[34]

CenkowskiM, WudelB, PoliquinV. Vaginal trichomoniasis. CMAJ. 2022;194(6):217.

[35]

MuznyCA, Van Gerwen OT, LegendreD. Secnidazole: a treatment for trichomoniasis in adolescents and adults. Expert Rev Anti Infect Ther. 2022;20(8):1067-1076.

[36]

RowleyJ, Vander Hoorn S, KorenrompE, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548-562.

[37]

Van GerwenOT, MuznyCA, MarrazzoJM. Sexually transmitted infections and female reproductive health. Nat Microbiol. 2022;7(8):1116-1126.

[38]

Van GerwenOT, Craig-Kuhn MC, JonesAT, et al. Trichomoniasis and adverse birth outcomes: a systematic review and meta-analysis. BJOG. 2021;128(12):1907-1915.

[39]

MeitesE, GaydosCA, HobbsMM, et al. A review of evidence-based care of symptomatic trichomoniasis and asymptomatic Trichomonas vaginalis infections. Clin Infect Dis. 2015;61(suppl 8):837-848.

[40]

WiringaAE, NessRB, DarvilleT, Beigi RH, HaggertyCL. Trichomonas vaginalis, endometritis and sequelae among women with clinically suspected pelvic inflammatory disease. Sex Transm Infect. 2020;96(6):436-438.

[41]

YangS, ZhaoW, WangH, Wang Y, LiJ, WuX. Trichomonas vaginalis infection-associated risk of cervical cancer: a meta-analysis. Eur J Obstet Gynaecol Reprod Biol. 2018;228:166-173.

[42]

MielczarekE, Blaszkowska J. Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection. 2016;44(4):447-458.

[43]

ZhangZ, LiY, LuH, et al. A systematic review of the correlation between Trichomonas vaginalis infection and infertility. Acta Trop. 2022;236:106693.

[44]

FarrA, Effendy I, Frey TirriB, et al. Guideline: vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses. 2021;64(6):583-602.

[45]

ColeAM. Innate host defense of human vaginal and cervical mucosae. Curr Top Microbiol Immunol. 2006;306:199-230.

[46]

FelixTC, de Brito Röder DVD, Dos Santos PedrosoR. Alternative and complementary therapies for vulvovaginal candidiasis. Folia Microbiol. 2019;64(2):133-141.

[47]

PangQ, LiuW, CuiF, KanS, LiX. Biased genotype distributions of Candida albicans strains associated with 649 clinical vulvovaginal candidiasis in China. Mycopathologia. 2022;187(5-6):427-437.

[48]

AndersonMR, KlinkK, CohrssenA. Evaluation of vaginal complaints. JAMA. 2004;291(11):1368-1379.

[49]

WeissenbacherT, WitkinSS, LedgerWJ, et al. Relationship between clinical diagnosis of recurrent vulvovaginal candidiasis and detection of Candida species by culture and polymerase chain reaction. Arch Gynecol Obstet. 2009;279(2):125-129.

[50]

YanoJ, SobelJD, NyirjesyP, et al. Current patient perspectives of vulvovaginal candidiasis: incidence, symptoms, management and post-treatment outcomes. BMC Womens Health. 2019;19(1):48.

[51]

SpacekJ, JilekP, BuchtaV, Forstl M, HronekM, HoleckovaM. The serum levels of calcium, magnesium, iron and zinc in patients with recurrent vulvovaginal candidosis during attack, remission and in healthy controls. Mycoses. 2005;48(6):391-395.

[52]

SobelJD. Vulvovaginal candidosis. Lancet. 2007;369(9577):1961-1971.

[53]

BlosteinF, Levin-Sparenberg E, WagnerJ, FoxmanB. Recurrent vulvovaginal candidiasis. Ann Epidemiol. 2017;27(9):575-582.

[54]

DenningDW, KnealeM, SobelJD, Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis. 2018;18(11):339.

[55]

PradidarcheepW, Wallner C, DabhoiwalaNF, LamersWH. Anatomy and histology of the lower urinary tract. Handb Exp Pharmacol. 2011;202:117-148.

[56]

MistryMA, Klarskov N, DeLanceyJO, LoseG. A structured review on the female urethral anatomy and innervation with an emphasis on the role of the urethral longitudinal smooth muscle. Int Urogynecol J. 2020;31(1):63-71.

[57]

FoxmanB. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28(1):1-13.

[58]

MunozJA, Uhlemann AC, BaraschJ. Innate bacteriostatic mechanisms defend the urinary tract. Annu Rev Physiol. 2022;84:533-558.

[59]

ColganR, JaffeGA, NicolleLE. Asymptomatic bacteriuria. Am Fam Physician. 2020;102(2):99-104.

[60]

NicolleLE, GuptaK, BradleySF, et al. Clinical practice guideline for the management of asymptomatic bacteriuria:2019 update by the Infectious Diseases Society of America. Clin Infect Dis. 2019;68(10):1611-1615.

[61]

KalinderiK, DelkosD, KalinderisM, Athanasiadis A, KalogiannidisI. Urinary tract infection during pregnancy: current concepts on a common multifaceted problem. J Obstet Gynaecol. 2018;38(4):448-453.

[62]

KimHJ, ParkJK, ParkSC, et al. The prevalence of causative organisms of community-acquired urethritis in an age group at high risk for sexually transmitted infections in Korean soldiers. J R Army Med Corps. 2017;163(1):20-22.

[63]

LiboisA, HallinM, CrucittiT, Delforge M, De WitS. Prevalence of Mycoplasma genitalium in men with urethritis in a large public hospital in Brussels, Belgium: an observational, cross-sectional study. PLoS One. 2018;13(4):e0196217.

[64]

HazraA, Collison MW, DavisAM. CDC sexually transmitted infections treatment guidelines, 2021. JAMA. 2022;327(9):870-871.

[65]

Cooperative Group of Infectious Disease, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. Guideline of pelvic inflammatory disease (2019 revised edition). Zhonghua Fu Chan Ke Za Zhi. 2019;54(7):433-437.

[66]

SavarisRF, Fuhrich DG, DuarteRV, FranikS, RossJDC. Antibiotic therapy for pelvic inflammatory disease: an abridged version of a Cochrane systematic review and meta-analysis of randomised controlled trials. Sex Transm Infect. 2019;95(1):21-27.

[67]

St CyrS, BarbeeL, WorkowskiKA, et al. Update to CDC’s treatment guidelines for gonococcal infection, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(50):1911-1916.

[68]

DayMJ, Spiteri G, JacobssonS, et al. Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect Dis. 2018;18(1):609.

[69]

WorkowskiKA, BolanGA, Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015;64(RR-03):1-137.

[70]

GernertKM, SebyS, SchmererMW, et al. Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance data. Lancet Microbe. 2020;1(4):e154-e164.

[71]

DeanG, SoniS, PittR, Ross J, SabinC, WhethamJ. Treatment of mild-to-moderate pelvic inflammatory disease with a short-course azithromycin-based regimen versus ofloxacin plus metronidazole: results of a multicentre, randomised controlled trial. Sex Transm Infect. 2021;97(3):177-182.

[72]

ZhangK, LuM, ZhuX, et al. Antibiotic resistance and pathogenicity assessment of various Gardnerella sp. strains in local China. Front Microbiol. 2022;13:1009798.

[73]

MaX, WangX, YeS, LiuJ, YuanH, Wang N. Biofilm and pathogenic factor analysis of Gardnerella vaginalis associated with bacterial vaginosis in Northeast China. Front Microbiol. 2022;13:1033040.

[74]

QinH, LiuY, ZhaiZ, Xiao B. Biofilm-forming capacity and drug resistance of different Gardnerella subgroups associated with bacterial vaginosis. Microorganisms. 2023;11(9):2186.

[75]

NyirjesyP, Brookhart C, LazenbyG, SchwebkeJ, SobelJD. Vulvovaginal candidiasis: a review of the evidence for the 2021 centers for disease control and prevention of sexually transmitted infections treatment guidelines. Clin Infect Dis. 2022;74(suppl 2):162.

[76]

Rodríguez-CerdeiraC, GregorioMC, Molares-Vila A, et al. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces. 2019;174:110-125.

[77]

XiY, WangY, GaoJ, XiaoY, DuJ. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano. 2019;13(12):13645-13657.

[78]

DunaiskiCM, KockMM, ChanWY, Ismail A, PetersRPH. Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol. 2024;62(2):myae009.

[79]

KissingerPJ, GaydosCA, SeñaAC, et al. Diagnosis and management of Trichomonas vaginalis: summary of evidence reviewed for the 2021 centers for disease control and prevention sexually transmitted infections treatment guidelines. Clin Infect Dis. 2022;74(suppl 2):152.

[80]

SchmidG, Narcisi E, MosureD, SecorWE, Higgins J, MorenoH. Prevalence of metronidazole-resistant Trichomonas vaginalis in a gynecology clinic. J Reprod Med. 2001;46(6):545-549.

[81]

SchwebkeJR, Barrientes FJ. Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother. 2006;50(12):4209-4210.

[82]

KrashinJW, Koumans EH, Bradshaw-SydnorAC, et al. Trichomonas vaginalis prevalence, incidence, risk factors and antibiotic-resistance in an adolescent population. Sex Transm Dis. 2010;37(7):440-444.

[83]

PérezS, Fernández-Verdugo A, PérezF, VázquezF. Prevalence of 5-nitroimidazole-resistant Trichomonas vaginalis in Oviedo, Spain. Sex Transm Dis. 2001;28(2):115-116.

[84]

Abdel-MagiedAA, El-Kholya EI, Abou El-KhairSM, et al. The genetic diversity of metronidazole susceptibility in Trichomonas vaginalis clinical isolates in an Egyptian population. Parasitol Res. 2017;116(11):3125-3130.

[85]

MohammadzadehF, Dolatian M, JorjaniM, Alavi MajdH, Borumandnia N. Comparing the therapeutic effects of garlic tablet and oral metronidazole on bacterial vaginosis: a randomized controlled clinical trial. Iran Red Crescent Med J. 2014;16(7):19118. https://archive.ircmj.com/article/16/7/55178-pdf.pdf

[86]

GiugnoCS, SilvaAL, FuhrichDG, et al. Daily dose of clindamycin versus standard divided doses in obstetrical and gynecological infections: a retrospective cohort study. Int J STD AIDS. 2013;24(11):893-898.

[87]

HansonJM, McGregor JA, HillierSL, et al. Metronidazole for bacterial vaginosis. A comparison of vaginal gel vs. oral therapy. J Reprod Med. 2000;45(11):889-896.

[88]

ChenJY, TianH, BeigiRH. Treatment considerations for bacterial vaginosis and the risk of recurrence. J Womens Health (Larchmt). 2009;18(12):1997-2004.

[89]

úñezJT, Gómez G. Low-dose secnidazole in the treatment of bacterial vaginosis. Int J Gynaecol Obstet. 2005;88(3):281-285.

[90]

Abd El AzizMA, Sharifipour F, AbediP, JahanfarS, JudgeHM. Secnidazole for treatment of bacterial vaginosis: a systematic review. BMC Womens Health. 2019;19(1):121.

[91]

Armstrong-BuisseretL, Brittain C, DavidM, et al. Metronidazole versus lactic acid for treating bacterial vaginosis (VITA):protocol for a randomised controlled trial to assess the clinical and cost effectiveness of topical lactic acid gel for treating second and subsequent episodes of bacterial vaginosis. Trials. 2019;20(1):648.

[92]

NishimotoAT, Wiederhold NP, FlowersSA, et al. In vitro activities of the novel investigational tetrazoles VT-1161 and VT-1598 compared to the triazole antifungals against azole-resistant strains and clinical isolates of Candida albicans. Antimicrob Agents Chemother. 2019;63(6):e00341-19.

[93]

MartensMG, Maximos B, DegenhardtT, et al. Phase 3 study evaluating the safety and efficacy of oteseconazole in the treatment of recurrent vulvovaginal candidiasis and acute vulvovaginal candidiasis infections. Am J Obstet Gynecol. 2022;227(6):880.

[94]

SpecA, Pullman J, ThompsonGR, et al. MSG-10: a phase 2 study of oral ibrexafungerp (SCY-078) following initial echinocandin therapy in non-neutropenic patients with invasive candidiasis. J Antimicrob Chemother. 2019;74(10):3056-3062.

[95]

SchwebkeJR, SobelR, GerstenJK, et al. Ibrexafungerp versus placebo for vulvovaginal candidiasis treatment: a phase 3, randomized, controlled superiority trial (VANISH 303). Clin Infect Dis. 2022;74(11):1979-1985.

[96]

MendlingW, BraschJ, CornelyOA, et al. Guideline: vulvovaginal candidosis (AWMF 015/072), S2k (excluding chronic mucocutaneous candidosis). Mycoses. 2015;58(suppl 1):1-15.

[97]

SatoraM, Grunwald A, ZarembaB, et al. Treatment of vulvovaginal candidiasis—an overview of guidelines and the latest treatment methods. J Clin Med. 2023;12(16):5376.

[98]

WatsonMC, Grimshaw JM, BondCM, MollisonJ, Ludbrook A. Oral versus intra-vaginal imidazole and triazole anti-fungal agents for the treatment of uncomplicated vulvovaginal candidiasis (thrush):a systematic review. BJOG. 2002;109(1):85-95.

[99]

HagerWD, BrownST, KrausSJ, Kleris GS, PerkinsGJ, HendersonM. Metronidazole for vaginal trichomoniasis. Seven-day vs single-dose regimens. JAMA. 1980;244(11):1219-1220.

[100]

SobelJD, Nyirjesy P, BrownW. Tinidazole therapy for metronidazole-resistant vaginal trichomoniasis. Clin Infect Dis. 2001;33(8):1341-1346.

[101]

NelA, van Niekerk N, KapigaS, et al. Safety and efficacy of a dapivirine vaginal ring for HIV prevention in women. N Engl J Med. 2016;375(22):2133-2143.

[102]

BaetenJM, Donnell D, NdaseP, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med. 2012;367(5):399-410.

[103]

Abdool KarimQ, Abdool Karim SS, FrohlichJA, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168-1174.

[104]

Delany-MoretlweS, Hughes JP, BockP, et al. Cabotegravir for the prevention of HIV-1 in women: results from HPTN 084, a phase 3, randomised clinical trial. Lancet. 2022;399(10337):1779-1789.

[105]

WagenlehnerFM, Weidner W, NaberKG. An update on uncomplicated urinary tract infections in women. Curr Opin Urol. 2009;19(4):368-374.

[106]

WagenlehnerFM, PilatzA, NaberKG, Perletti G, WagenlehnerCM, WeidnerW. Anti-infective treatment of bacterial urinary tract infections. Curr Med Chem. 2008;15(14):1412-1427.

[107]

LiX, FanH, ZiH, et al. Global and regional burden of bacterial antimicrobial resistance in urinary tract infections in 2019. J Clin Med. 2022;11(10):2817.

[108]

MazzariolA, BazajA, CornagliaG. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J Chemother. 2017;29(sup1):2-9.

[109]

LaiKK, Fontecchio SA. Use of silver-hydrogel urinary catheters on the incidence of catheter-associated urinary tract infections in hospitalized patients. Am J Infect Control. 2002;30(4):221-225.

[110]

ThibonP, Le Coutour X, LeroyerR, FabryJ. Randomized multi-centre trial of the effects of a catheter coated with hydrogel and silver salts on the incidence of hospital-acquired urinary tract infections. J Hosp Infect. 2000;45(2):117-124.

[111]

SrinivasanA, Karchmer T, RichardsA, SongX, PerlTM. A prospective trial of a novel, silicone-based, silver-coated foley catheter for the prevention of nosocomial urinary tract infections. Infect Control Hosp Epidemiol. 2006;27(1):38-43.

[112]

BolognaRA, TuLM, PolanskyM, Fraimow HD, GordonDA, WhitmoreKE. Hydrogel/silver ion-coated urinary catheter reduces nosocomial urinary tract infection rates in intensive care unit patients: a multicenter study. Urology. 1999;54(6):982-987.

[113]

KarchmerTB, Giannetta ET, MutoCA, StrainBA, FarrBM. A randomized crossover study of silver-coated urinary catheters in hospitalized patients. Arch Intern Med. 2000;160(21):3294-3298.

[114]

LedererJW, JarvisWR, ThomasL, Ritter J. Multicenter cohort study to assess the impact of a silver-alloy and hydrogel-coated urinary catheter on symptomatic catheter-associated urinary tract infections. J Wound Ostomy Continence Nurs. 2014;41(5):473-480.

[115]

NaahidiS, JafariM, LoganM, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotech Adv. 2017;35(5):530-544.

[116]

AndersonJM. Chapter 39 – biocompatibility and bioresponse to biomaterials. In: Atala A, Lanza R, Mikos AG, Nerem R, eds. Principles of Regenerative Medicine. 3rd ed. Academic Press; 2019:675-694. Accessed March 5, 2024. https://www.sciencedirect.com/science/article/pii/B9780128098806000394

[117]

Ayoubi-JoshaghaniMH, Seidi K, AziziM, et al. Potential applications of advanced nano/hydrogels in biomedicine: static, dynamic, multi-stage, and bioinspired. Adv Funct Materials. 2020;30(45):2004098.

[118]

DruryJL, MooneyDJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-4351.

[119]

MadsenF, PeppasNA. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials. 1999;20(18):1701-1708.

[120]

GanjiF, Vasheghani-Farahani S, Vasheghani-FarahaniE. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19(5):375-398.

[121]

NguyenHM, Ngoc Le TT, NguyenAT, Thien LeHN, PhamTT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv. 2023;13(8):5509-5528.

[122]

ParentM, Baradari H, ChampionE, DamiaC, Viana-Trecant M. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance. J Control Release. 2017;252:1-17.

[123]

BaranelloMP, BauerL, BenoitDS. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Biomacromolecules. 2014;15(7):2629-2641.

[124]

KoehlerKC, AnsethKS, BowmanCN. Diels-Alder mediated controlled release from a poly(ethylene glycol) based hydrogel. Biomacromolecules. 2013;14(2):538-547.

[125]

NicholsD, Pimentel MB, BorgesFTP, et al. Sustained release of phosphates from hydrogel nanoparticles suppresses bacterial collagenase and biofilm formation in vitro. Front Bioeng Biotechnol. 2019;7:153.

[126]

LiuJ, ZhouZ, HouM, et al. Capturing cerium ions via hydrogel microspheres promotes vascularization for bone regeneration. Mater Today Bio. 2024;25:100956.

[127]

YanS, WuS, ZhangJ, et al. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker. Food Chem. 2023;418:135966.

[128]

SerraL, Doménech J, PeppasNA. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. 2006;27(31):5440-5451.

[129]

ChoiW, AizikG, Ostertag-HillCA, KohaneDS. A hybrid nanoparticle-protein hydrogel system for prolonged local anesthesia. Biomaterials. 2024;306:122494.

[130]

CongYY, FanB, ZhangZY, Li GY. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics. Int Ophthalmol. 2023;43(7):2575-2588.

[131]

ChienST, SuydamIT, WoodrowKA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev. 2023;198:114860.

[132]

LeeSY, SeoJH, KimS, et al. Cuproptosis-inducible chemotherapeutic/cascade catalytic reactor system for combating with breast cancer. Small. 2023;19(35):e2301402.

[133]

SafhiAY, NaveenNR, RollaKJ, et al. Enhancement of antifungal activity and transdermal delivery of 5-flucytosine via tailored spanlastic nanovesicles: statistical optimization, in-vitro characterization, and in-vivo biodistribution study. Front Pharmacol. 2023;14:1321517.

[134]

MuraP, Maestrelli F, CirriM, MenniniN. Multiple roles of chitosan in mucosal drug delivery: an updated review. Mar Drugs. 2022;20(5):335.

[135]

ValamlaB, ThakorP, PhuseR, et al. Engineering drug delivery systems to overcome the vaginal mucosal barrier: current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol. 2022;70:103162.

[136]

LiuZ, LiJ, ZhangZ, Liu J, WuC, YuY. Incorporating self-healing capability in temperature-sensitive hydrogels by non-covalent chitosan crosslinkers. Eur Polym J. 2023;182:111728.

[137]

LiuM, SongX, WenY, ZhuJL, LiJ. Injectable thermoresponsive hydrogel formed by alginate-g-poly(n-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl Mater Interfaces. 2017;9(41):35673-35682.

[138]

KnipeJM, StrongLE, PeppasNA. Enzyme-and pH-responsive microencapsulated nanogels for oral delivery of sirna to induce TNF-α knockdown in the intestine. Biomacromolecules. 2016;17(3):788-797.

[139]

TianB, HuaS, LiuJ. Multi-functional chitosan-based nanoparticles for drug delivery: recent advanced insight into cancer therapy. Carbohydr Polym. 2023;315:120972.

[140]

WeiX, XueY, SunY, et al. A robust anisotropic light-responsive hydrogel for ultrafast and complex biomimetic actuation via poly(pyrrole)-coated electrospun nanofiber. Chem Eng J. 2023;452:139373.

[141]

Durán-LobatoM, Carrillo-Conde B, KhairandishY, PeppasNA. Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: design, characterization, and in vitro targeting evaluation. Biomacromolecules. 2014;15(7):2725-2734.

[142]

Ghosal A, Kaushik A, eds. Intelligent Hydrogels in Diagnostics and Therapeutics. CRC Press; 2020.

[143]

Ackun-FarmmerMA, OverbyCT, HawsBE, Choe R, BenoitDSW. Biomaterials for orthopedic diagnostics and theranostics. Curr Opin Biomed Eng. 2021;19:100308.

[144]

CampeaMA, LoftsA, XuF, Yeganeh M, KostashukM, HoareT. Disulfide-cross-linked nanogel-based nanoassemblies for chemotherapeutic drug delivery. ACS Appl Mater Interfaces. 2023;15(21):25324-25338.

[145]

Torres-FigueroaAV, Pérez-Martínez CJ, EncinasJC, et al. Thermosensitive bioadhesive hydrogels based on poly(N-isopropylacrilamide) and poly(methyl vinyl ether-alt-maleic anhydride) for the controlled release of metronidazole in the vaginal environment. Pharmaceutics. 2021;13(8):1284.

[146]

HestinD, Hanesse B, FrimatL, TrechotP, NetterP, KesslerM. Metronidazole-associated hepatotoxicity in a hemodialyzed patient. Nephron. 2008;68(2):286.

[147]

Armstrong-BuisseretL, Brittain C, KaiJ, et al. Lactic acid gel versus metronidazole for recurrent bacterial vaginosis in women aged 16 years and over: the VITA RCT. Health Technol Assess. 2022;26(2):1-170.

[148]

ZhangY, Miyamoto Y, IharaS, et al. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. Adv Ther. 2019;2(12):1900157.

[149]

CapparelliEV, Bricker-Ford R, RogersMJ, McKerrowJH, ReedSL. Phase I clinical trial results of auranofin, a novel antiparasitic agent. Antimicrob Agents Chemother. 2017;61(1):e01947-16.

[150]

WangX, WangW, LiJ, et al. Efficacy and safety of oral ibrexafungerp in Chinese patients with vulvovaginal candidiasis: a phase III, randomized, double-blind study. Infection. 2024. Published online April 3, 2024.

[151]

PowellAM, Nyirjesy P. Recurrent vulvovaginitis. Best Pract Res Clin Obstet Gynaecol. 2014;28(7):967-976.

[152]

VanićŽ, Škalko-Basnet N. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci. 2013;50(1):29-41.

[153]

ArpaMD, Yoltaş A, Onay TarlanE, et al. New therapeutic system based on hydrogels for vaginal candidiasis management: formulation-characterization and in vitro evaluation based on vaginal irritation and direct contact test. Pharm Dev Technol. 2020;25(10):1238-1248.

[154]

KnuthK, AmijiM, RobinsonJR. Hydrogel delivery systems for vaginal and oral applications: formulation and biological considerations. Adv Drug Deliv Rev. 1993;11(1):137-167.

[155]

NarayanaswamyR, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules. 2019;24(3):603.

[156]

MauckC, Hillier SL, GendreauJ, et al. Single-dose, bioadhesive clindamycin 2% gel for bacterial vaginosis: a randomized controlled trial. Obstet Gynecol. 2022;139(6):1092-1102.

[157]

MondalP, AlurHH, JohnstonTP. Evaluation of TRI-726 as a drug delivery matrix. Drug Dev Ind Pharm. 2011;37(8):995-1001.

[158]

MauckC, Hillier SL, GendreauJ, et al. Acceptability of single-dose clindamycin gel for bacterial vaginosis: a randomized controlled trial. Clin Ther. 2023;45(5):415-425.

[159]

CirriM, Maestrelli F, ScuotaS, BazzucchiV, MuraP. Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int J Pharm. 2021;598:120375.

[160]

ArgentaDF, Bernardo B, ChamorroAF, MatosPR, CaonT. Thermosensitive hydrogels for vaginal delivery of secnidazole as an approach to overcome the systemic side-effects of oral preparations. Eur J Pharm Sci. 2021;159:105722.

[161]

MalliS, Loiseau PM, BouchemalK. Trichomonas vaginalis motility is blocked by drug-free thermosensitive hydrogel. ACS Infect Dis. 2020;6(1):114-123.

[162]

BouchemalK, Aka-Any-Grah A, Dereuddre-BosquetN, et al. Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob Agents Chemother. 2015;59(4):2215-2222.

[163]

WeiG, LiuQ, WangX, et al. A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. Sci Adv. 2023;9(20):eadg0949.

[164]

ZimmermannES, Ferreira LM, DenardiLB, et al. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis. Eur J Pharm Sci. 2021;167:106011.

[165]

PolitchJA, Marathe J, AndersonDJ. Characteristics and quantities of HIV host cells in human genital tract secretions. J Infect Dis. 2014;210(suppl 3):609-615.

[166]

AndersonDJ, Politch JA, NadolskiAM, BlaskewiczCD, PudneyJ, MayerKH. Targeting Trojan Horse leukocytes for HIV prevention. AIDS. 2010;24(2):163-187.

[167]

Kolodkin-GalD, HulotSL, Korioth-SchmitzB, et al. Efficiency of cell-free and cell-associated virus in mucosal transmission of human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol. 2013;87(24):13589-13597.

[168]

IwamiS, Takeuchi JS, NakaokaS, et al. Cell-to-cell infection by HIV contributes over half of virus infection. eLife. 2015;4:e08150.

[169]

AbelaIA, Berlinger L, SchanzM, et al. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog. 2012;8(4):e1002634.

[170]

SuphaphiphatK, Desjardins D, LorinV, et al. Mucosal application of the broadly neutralizing antibody 10-1074 protects macaques from cell-associated SHIV vaginal exposure. Nat Commun. 2023;14(1):6224.

[171]

FariaMJ, Machado R, RibeiroA, et al. Rational development of liposomal hydrogels: a strategy for topical vaginal antiretroviral drug delivery in the context of HIV prevention. Pharmaceutics. 2019;11(9):485.

[172]

Sundara RajanS, Turovskiy Y, SinghY, ChikindasML, SinkoPJ. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment. J Control Release. 2014;194:301-309.

[173]

JøraholmenMW, Bhargava A, JulinK, JohannessenM, Škalko-Basnet N. The antimicrobial properties of chitosan can be tailored by formulation. Mar Drugs. 2020;18(2):96.

[174]

N’Guessan GnamanKC, BouttierS, YeoA, et al. Characterization and in vitro evaluation of a vaginal gel containing Lactobacillus crispatus for the prevention of gonorrhea. Int J Pharm. 2020;588:119733.

[175]

CassanoR, CurcioF, MandracchiaD, TrapaniA, Trombino S. Gelatin and glycerine-based bioadhesive vaginal hydrogel. Curr Drug Deliv. 2020;17(4):303-311.

[176]

SharifzadehG, Hezaveh H, MuhamadII, HashimS, Khairuddin N. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. Mater Sci Eng C Mater Biol Appl. 2020;110:110609.

[177]

PermanaAD, AsriRM, AmirMN, et al. Development of thermoresponsive hydrogels with mucoadhesion properties loaded with metronidazole gel-flakes for improved bacterial vaginosis treatment. Pharmaceutics. 2023;15(5):1529.

[178]

ČačićA, Amidžić KlarićD, KeserS, et al. A novel approach for the treatment of aerobic vaginitis: azithromycin liposomes-in-chitosan hydrogel. Pharmaceutics. 2023;15(5):1356.

[179]

MalliS, BoriesC, PradinesB, Loiseau PM, PonchelG, BouchemalK. In situ forming pluronic® F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur J Pharm Biopharm. 2017;112:143-147.

[180]

OsmariBF, Giuliani LM, ReolonJB, RigoGV, TascaT, CruzL. Gellan gum-based hydrogel containing nanocapsules for vaginal indole-3-carbinol delivery in trichomoniasis treatment. Eur J Pharm Sci. 2020;151:105379.

[181]

dos ReisFP, RigoGV, NogueiraCW, Tasca T, Marcondes SariMH, CruzL. Locust bean gum nano-based hydrogel for vaginal delivery of diphenyl diselenide in the treatment of trichomoniasis: formulation characterization and in vitro biological evaluation. Pharmaceutics. 2022;14(10):2112.

[182]

PerinelliDR, Campana R, SkourasA, et al. Chitosan loaded into a hydrogel delivery system as a strategy to treat vaginal co-infection. Pharmaceutics. 2018;10(1):23.

[183]

CiT, YuanL, BaoX, et al. Development and anti-Candida evaluation of the vaginal delivery system of amphotericin B nanosuspension-loaded thermogel. J Drug Target. 2018;26(9):829-839.

[184]

dos SantosMK, KreutzT, DanielliLJ, et al. A chitosan hydrogel-thickened nanoemulsion containing Pelargonium graveolens essential oil for treatment of vaginal candidiasis. J Drug Deliv Sci Technol. 2020;56:101527.

[185]

Pérez-GonzálezN, Bozal-de FebrerN, Calpena-Campmany AC, et al. New formulations loading caspofungin for topical therapy of vulvovaginal candidiasis. Gels. 2021;7(4):259.

[186]

Dantas-MedeirosR, Marena GD, AraújoVHS, et al. A new hydrogel containing a proanthocyanidin polymer-rich extract of Commiphora leptophloeos for treating vulvovaginal candidiasis: preclinical results using the alternative model of Galleria mellonella. J Drug Deliv Sci Technol. 2023;85:104531.

[187]

SatoMR, Oshiro-Junior JA, RoderoCF, et al. Enhancing antifungal treatment of Candida albicans with hypericin-loaded nanostructured lipid carriers in hydrogels: characterization, in vitro, and in vivo photodynamic evaluation. Pharmaceuticals (Basel). 2023;16(8):1094.

[188]

Martín-IllanaA, Cazorla-Luna R, Notario-PérezF, BedoyaLM, Ruiz-Caro R, VeigaMD. Freeze-dried bioadhesive vaginal bigels for controlled release of Tenofovir. Eur J Pharm Sci. 2019;127:38-51.

[189]

EnggiCK, IsaHT, SulistiawatiS, et al. Development of thermosensitive and mucoadhesive gels of cabotegravir for enhanced permeation and retention profiles in vaginal tissue: a proof of concept study. Int J Pharm. 2021;609:121182.

[190]

YeruvaT, LeeCH. Enzyme responsive delivery of anti-retroviral peptide via smart hydrogel. AAPS PharmSciTech. 2022;23(7):234.

[191]

AlvesT, SouzaJ, RebeloM, et al. Formulation and evaluation of thermoresponsive polymeric blend as a vaginal controlled delivery system. J Sol-Gel Sci Technol. 2018;86(3):536-552.

[192]

SzymańskaE, Orłowski P, WinnickaK, et al. Multifunctional tannic acid/silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection: in vitro and in vivo studies. Int J Mol Sci. 2018;19(2):387.

[193]

AslamS, AlboM, BrubakerL. Recurrent urinary tract infections in adult women. JAMA. 2020;323(7):658-659.

[194]

KranzJ, Bartoletti R, BruyèreF, et al. European Association of Urology guidelines on urological infections: summary of the 2024 guidelines. Eur Urol. 2024;86:27-41. https://www.sciencedirect.com/science/article/pii/S0302283824022632

[195]

Flores-MirelesAL, Walker JN, CaparonM, HultgrenSJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-284.

[196]

TanakaH, Nakanishi Y, ToyoshimaH, TanigawaM. Levofloxacin-induced achilles tendinitis in a steroid user. Intern Med. 2024;63(6):889.

[197]

XiaB, ZhongR, WuW, et al. Mucin O-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model. Microbiome. 2022;10(1):139.

[198]

WorbyCJ, Schreiber HL, StraubTJ, et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat Microbiol. 2022;7(5):630-639.

[199]

HamdanHZ, Kubbara E, AdamAM, HassanOS, Suliman SO, AdamI. Urinary tract infections and antimicrobial sensitivity among diabetic patients at Khartoum, Sudan. Ann Clin Microbiol Antimicrob. 2015;14:26.

[200]

HayajnehWA, HajjA, HullielF, et al. Susceptibility trends and molecular characterization of Gram-negative bacilli associated with urinary tract and intra-abdominal infections in Jordan and Lebanon: SMART 2011-2013. Int J Infect Dis. 2015;35:56-61.

[201]

LeopoldM, Kabicher A, PapIJ, et al. A comparative study on antibiotic resistant Escherichia coli isolates from Austrian patients and wastewater-influenced Danube River water and biofilms. Int J Hyg Environ Health. 2024;258:114361.

[202]

ArchanaD, SinghBK, DuttaJ, Dutta PK. Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol. 2015;73:49-57.

[203]

AlshehriSM, Aldalbahi A, Al-HajjiAB, et al. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym. 2016;138:229-236.

[204]

Flores-MirelesA, HrehaTN, HunstadDA. Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Top Spinal Cord Inj Rehabil. 2019;25(3):228-240.

[205]

McCoyCP, IrwinNJ, BradyC, et al. An infection-responsive approach to reduce bacterial adhesion in urinary biomaterials. Mol Pharm. 2016;13(8):2817-2822.

[206]

MiaoJ, WuX, FangY, et al. Multifunctional hydrogel coatings with high antimicrobial loading efficiency and pH-responsive properties for urinary catheter applications. J Mater Chem B. 2023;11(15):3373-3386.

[207]

HaidariH, Vasilev K, CowinAJ, KopeckiZ. Bacteria-activated dual pH-and temperature-responsive hydrogel for targeted elimination of infection and improved wound healing. ACS Appl Mater Interfaces. 2022;14(46):51744-51762.

[208]

Al-EniziAM, AhamadT, Al-HajjiAB, Ahmed J, ChaudharyAA, AlshehriSM. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens. Int J Biol Macromol. 2018;109:803-809.

[209]

TarawnehO, Alwahsh W, Abul-FutouhH, et al. Determination of antimicrobial and antibiofilm activity of combined LVX and AMP impregnated in p(HEMA) hydrogel. Appl Sci. 2021;11(18):8345.

[210]

TarawnehO, Abu Mahfouz H, HamadnehL, et al. Assessment of persistent antimicrobial and anti-biofilm activity of p-HEMA hydrogel loaded with rifampicin and cefixime. Sci Rep. 2022;12(1):3900.

[211]

ZmejkoskiDZ, Marković ZM, ZdravkovićNM, et al. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. RSC Adv. 2021;11(15):8559-8568.

[212]

LinC, HuangZ, WuT, et al. Catechol-modified chitosan hydrogel containing PLGA microspheres loaded with triclosan and chlorhexidine: a sustained-release antibacterial system for urinary catheters. Pharm Dev Technol. 2022;27(5):545-553.

[213]

CaiY, YangH, LiJ, et al. Antibacterial AgNPs-PAAm-CS-PVP nanocomposite hydrogel coating for urinary catheters. Eur Polym J. 2023;196:112260.

[214]

SlateAJ, ClarkeOE, KerioM, Nzakizwanayo J, PatelBA, JonesBV. Infection responsive coatings to reduce biofilm formation and encrustation of urinary catheters. J Appl Microbiol. 2023;134(6):lxad121.

[215]

CaiY, GuR, DongY, et al. Fabrication of antibacterial polydopamine-carboxymethyl cellulose-Ag nanoparticle hydrogel coating for urinary catheters. J Biomater Appl. 2023;38(1):73-84.

[216]

HuY, QiaoY, LeiP, et al. Dual network hydrogel coatings based on recombinant mussel protein with enhanced antibacterial and super-lubrication properties for urinary catheter applications. Chem Eng J. 2023;474:145502.

[217]

ZhaoM, GengS, ZhangL, et al. Prevention of urinary tract infection using a silver alloy hydrogel-coated catheter in critically ill patients: a single-center prospective randomized controlled study. J Intensive Med. 2024;4(1):118-124.

[218]

LiuY, LiM, ZhengY, et al. Hydrogel coatings on universal medical devices with water-responsive Janus adhesion and acidity-triggered transformation for adaptive antibacterial treatment and fluorescence diagnosis. Chem Eng J. 2024;481:148673.

[219]

ShangL, YuY, GaoY, et al. Nanozyme-reinforced hydrogel coatings for prevention of catheter-associated urinary tract infection. Nano Today. 2024;56:102271.

[220]

YangY, YangGW, LuJJ, et al. Fabrication of levofloxacin-loaded porcine acellular dermal matrix hydrogel and functional assessment in urinary tract infection. J Nanobiotechnol. 2024;22(1):1-18.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm - Biomaterials and Applications published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/