Inducing disulfidptosis in tumors:potential pathways and significance

Tao Mi , Xiangpan Kong , Meiling Chen , Peng Guo , Dawei He

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e791

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e791 DOI: 10.1002/mco2.791
REVIEW

Inducing disulfidptosis in tumors:potential pathways and significance

Author information +
History +
PDF

Abstract

Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.

Keywords

cystine / disulfidptosis / NADPH / SLC7A11 / tumor immunity

Cite this article

Download citation ▾
Tao Mi, Xiangpan Kong, Meiling Chen, Peng Guo, Dawei He. Inducing disulfidptosis in tumors:potential pathways and significance. MedComm, 2024, 5(11): e791 DOI:10.1002/mco2.791

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng F, Liao M, Qin R, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022; 7(1): 286.

[2]

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020; 17(7): 395-417.

[3]

Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023; 25(3): 404-414.

[4]

Yan Y, Teng H, Hang Q, et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun. 2023; 14(1): 3673.

[5]

Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes & Diseases. 2021; 8(6): 731-745.

[6]

Mukhopadhyay S, Kimmelman AC. Autophagy is critical for cysteine metabolism in pancreatic cancer through regulation of SLC7A11. Autophagy. 2021; 17(6): 1561-1562.

[7]

Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999; 274(17): 11455-11458.

[8]

Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022; 22(5): 280-297.

[9]

Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021; 277: 121110.

[10]

Kennel KB, Greten FR. Immune cell—produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021; 42: 101891.

[11]

Paul BD, Sbodio JI, Snyder SH. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol Sci. 2018; 39(5): 513-524.

[12]

Liu X, Olszewski K, Zhang Y, et al. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol. 2020; 22(4): 476-486.

[13]

Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015; 520(7545): 57-62.

[14]

Shen L, Zhang J, Zheng Z, et al. PHGDH inhibits ferroptosis and promotes malignant progression by upregulating SLC7A11 in bladder cancer. Int J Biol Sci. 2022; 18(14): 5459-5474.

[15]

Koppula P, Zhang Y, Shi J, Li W, Gan B. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem. 2017; 292(34): 14240-14249.

[16]

Goji T, Takahara K, Negishi M, Katoh H. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J Biol Chem. 2017; 292(48): 19721-19732.

[17]

Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose. J Biol Chem. 2020; 295(5): 1350-1365.

[18]

Zhao D, Meng Y, Dian Y, et al. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy. Redox Biol. 2023; 68: 102966.

[19]

Zhu Y, Kong L, Han T, Yan Q, Liu J. Machine learning identification and immune infiltration of disulfidptosis-related Alzheimer’s disease molecular subtypes. Immun Inflamm Dis 2023; 11(10):e1037.

[20]

Qin R, Huang L, Xu W, et al. Identification of disulfidptosis-related genes and analysis of immune infiltration characteristics in ischemic strokes. Math Biosci Eng. 2023; 20(10): 18939-18959.

[21]

Zhong Z, Zhang C, Ni S, et al. NFATc1-mediated expression of SLC7A11 drives sensitivity to TXNRD1 inhibitors in osteoclast precursors. Redox Biol. 2023; 63: 102711.

[22]

Martí-Andrés P, Finamor I, Torres-Cuevas I, et al. TRP14 is the rate-limiting enzyme for intracellular cystine reduction and regulates proteome cysteinylation. EMBO J. 2024; 43(13): 2789-2812.

[23]

Pader I, Sengupta R, Cebula M, et al. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Nat Acad Sci USA. 2014; 111(19): 6964-6969.

[24]

Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res. 2024; 12(1): 45.

[25]

Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000; 267(20): 6102-6109.

[26]

Moreno ML, Escobar J, Izquierdo-Álvarez A, et al. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radical Biol Med. 2014; 70: 265-277.

[27]

Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The importance of thioredoxin-1 in health and disease. Antioxidants (Basel, Switzerland). 2023; 12(5): 1078.

[28]

Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021; 12(8): 599-620.

[29]

Kreß JKC, Jessen C, Hufnagel A, et al. The integrated stress response effector ATF4 is an obligatory metabolic activator of NRF2. Cell Rep. 2023; 42(7): 112724.

[30]

Chang K, Chen Y, Zhang X, et al. DPP9 stabilizes NRF2 to suppress ferroptosis and induce sorafenib resistance in clear cell renal cell carcinoma. Cancer Res. 2023; 83(23): 3940-3955.

[31]

Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012; 485(7400): 661-665.

[32]

Ren Y, Chen J, Chen P, et al. Oxidative stress-mediated AMPK inactivation determines the high susceptibility of LKB1-mutant NSCLC cells to glucose starvation. Free Radical Biol Med. 2021; 166: 128-139.

[33]

Deng H, Chen Y, Wang L, et al. PI3K/mTOR inhibitors promote G6PD autophagic degradation and exacerbate oxidative stress damage to radiosensitize small cell lung cancer. Cell Death Dis. 2023; 14(10): 652.

[34]

Burgueño JF, Fritsch J, González EE, et al. Epithelial TLR4 signaling activates DUOX2 to induce microbiota-driven tumorigenesis. Gastroenterology. 2021; 160(3): 797-808.e6.

[35]

Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discovery. 2021; 20(9): 689-709.

[36]

Wang Y, Qi H, Liu Y, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021; 11(10): 4839-4857.

[37]

Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022; 13: 1039241.

[38]

Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019; 10(11): 822.

[39]

Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016; 73(1): 79-94.

[40]

Liu M, Weiss MA, Arunagiri A, et al. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab. 2018; 20(2): 28-50.

[41]

Shergalis AG, Hu S, Bankhead A 3rd, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther. 2020; 210: 107525.

[42]

Jha V, Kumari T, Manickam V, et al. ERO1-PDI redox signaling in health and disease. Antioxid Redox Signaling. 2021; 35(13): 1093-1115.

[43]

Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol. 2017; 13(8): 477-491.

[44]

Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 2015; 40(3): 141-148.

[45]

Saaranen MJ, Ruddock LW. Disulfide bond formation in the cytoplasm. Antioxid Redox Signaling. 2013; 19(1): 46-53.

[46]

Ogura J. Association of abnormal disulfide bond formation with disease development and progression. Yakugaku Zasshi: J Pharm Soc Jpn. 2022; 142(10): 1055-1060.

[47]

Narayan M. Revisiting the formation of a native disulfide bond: consequences for protein regeneration and beyond. Molecules. 2020; 25(22): 5337.

[48]

Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): a redox target and modulator of cellular senescence and aging-related diseases. Redox Biol. 2024; 70: 103032.

[49]

Zhang J, Li X, Zhao Z, Cai W, Fang J. Thioredoxin signaling pathways in cancer. Antioxid Redox Signaling. 2023; 38(4-6): 403-424.

[50]

Zheng T, Liu Q, Xing F, Zeng C, Wang W. Disulfidptosis: a new form of programmed cell death. J Exp Clin Cancer Res. 2023; 42(1): 137.

[51]

Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014; 39(8): 347-354.

[52]

Thomas D, Wu M, Nakauchi Y, et al. Dysregulated lipid synthesis by oncogenic IDH1 mutation is a targetable synthetic lethal vulnerability. Cancer Discov. 2023; 13(2): 496-515.

[53]

Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol. 2021; 46: 102065.

[54]

Bieling P, Rottner K. From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly. Curr Opin Cell Biol. 2023; 80: 102156.

[55]

Limaye AJ, Whittaker MK, Bendzunas GN, Cowell JK, Kennedy EJ. Targeting the WASF3 complex to suppress metastasis. Pharmacol Res. 2022; 182: 106302.

[56]

Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol. 2021; 14(1): 79.

[57]

Elmonem MA, Veys KRP, Prencipe G. Nephropathic cystinosis: pathogenic roles of inflammation and potential for new therapies. Cells. 2022; 11(2): 190.

[58]

Berquez M, Chen Z, Festa BP, et al. Lysosomal cystine export regulates mTORC1 signaling to guide kidney epithelial cell fate specialization. Nat Commun. 2023; 14(1): 3994.

[59]

Apruzzese F, Bottari E, Festa MR. Protonation equilibria and solubility of l-cystine. Talanta. 2002; 56(3): 459-469.

[60]

Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000; 346(Pt 1): 1-8.

[61]

Ramanathan RK, Stephenson JJ, Weiss GJ, et al. A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy. Invest New Drugs. 2012; 30(4): 1591-1596.

[62]

Mukherjee A, Huber K, Evans H, Lakhani N, Martin S. A cellular and molecular investigation of the action of PMX464, a putative thioredoxin inhibitor, in normal and colorectal cancer cell lines. Br J Pharmacol. 2007; 151(8): 1167-1175.

[63]

Fan C, Zheng W, Fu X, Li X, Wong YS, Chen T. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis. 2014; 5(4): e1191.

[64]

Seo MJ, Kim IY, Lee DM, et al. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis. 2023; 14(1): 42.

[65]

Zheng P, Xia Y, Shen X, et al. Combination of TrxR1 inhibitor and lenvatinib triggers ROS-dependent cell death in human lung cancer cells. Int J Biol Sci. 2024; 20(1): 249-264.

[66]

Chen M, Qian C, Jin B, et al. Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma. Cancer Biol Ther. 2023; 24(1): 2162807.

[67]

Zhang T, Zheng P, Shen X, et al. Curcuminoid WZ26, a TrxR1 inhibitor, effectively inhibits colon cancer cell growth and enhances cisplatin-induced cell death through the induction of ROS. Free Radical Biol Med. 2019; 141: 93-102.

[68]

Ding CC, Rose J, Sun T, et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nature Metabolism. 2020; 2(3): 270-277.

[69]

Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther. 2020; 5(1): 231.

[70]

Lerner F, Niere M, Ludwig A, Ziegler M. Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun. 2001; 288(1): 69-74.

[71]

Love NR, Pollak N, Dölle C, et al. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Nat Acad Sci USA. 2015; 112(5): 1386-1391.

[72]

Schild T, McReynolds MR, Shea C, et al. NADK is activated by oncogenic signaling to sustain pancreatic ductal adenocarcinoma. Cell Rep. 2021; 35(11): 109238.

[73]

Ilter D, Drapela S, Schild T, et al. NADK-mediated de novo NADP(H) synthesis is a metabolic adaptation essential for breast cancer metastasis. Redox Biol. 2023; 61: 102627.

[74]

Tedeschi PM, Bansal N, Kerrigan JE, Abali EE, Scotto KW, Bertino JR. NAD+ kinase as a therapeutic target in cancer. Clin Cancer Res. 2016; 22(21): 5189-5195.

[75]

Tedeschi PM, Lin H, Gounder M, et al. Suppression of cytosolic NADPH pool by thionicotinamide increases oxidative stress and synergizes with chemotherapy. Mol Pharmacol. 2015; 88(4): 720-727.

[76]

Liu T, Shi W, Ding Y, et al. (-)-epigallocatechin gallate is a noncompetitive inhibitor of NAD kinase. ACS Med Chem Lett. 2022; 13(11): 1699-1706.

[77]

Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013; 34(2-3): 121-138.

[78]

Shen C, Xuan B, Yan T, et al. m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 2020; 19(1): 72.

[79]

Du D, Liu C, Qin M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharmaceutica Sinica B. 2022; 12(2): 558-580.

[80]

Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int J Mol Sci. 2019; 20(13): 3374.

[81]

Ancey PB, Contat C, Meylan E. Glucose transporters in cancer—from tumor cells to the tumor microenvironment. FEBS J. 2018; 285(16): 2926-2943.

[82]

Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in cancer: a prima donna playing multiple characters. Int J Mol Sci. 2021; 22(9): 4716.

[83]

Gu M, Zhou X, Sohn JH, et al. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nat Immunol. 2021; 22(2): 193-204.

[84]

Harris B, Saleem S, Cook N, Searle E. Targeting hypoxia in solid and haematological malignancies. J Exp Clin Cancer Res. 2022; 41(1): 318.

[85]

Shangguan X, He J, Ma Z, et al. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 2021; 12(1): 1812.

[86]

Wu Q, Ba-Alawi W, Deblois G, et al. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun. 2020; 11(1): 4205.

[87]

Guo L, Zhang W, Xie Y, et al. Diaminobutoxy-substituted isoflavonoid (DBI-1) enhances the therapeutic efficacy of GLUT1 inhibitor BAY-876 by modulating metabolic pathways in colon cancer cells. Mol Cancer Ther. 2022; 21(5): 740-750.

[88]

Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology. 2023; 21(1): 400.

[89]

Lei S, Zhang J, Blum NT, et al. In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat Commun. 2022; 13(1): 1298.

[90]

Guo S, Li Z, Zhou R, et al. MRI-guided tumor therapy based on synergy of ferroptosis, immunosuppression reversal and disulfidptosis. Small (Weinheim an der Bergstrasse, Germany). 2024:e2309842.

[91]

Botzer LE, Maman S, Sagi-Assif O, et al. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer. 2016; 114(7): 759-766.

[92]

Agnihotri S, Mansouri S, Burrell K, et al. Ketoconazole and posaconazole selectively target HK2-expressing glioblastoma cells. Clin Cancer Res. 2019; 25(2): 844-855.

[93]

Liu B, Fu X, Du Y, et al. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis. 2023; 44(6): 525-534.

[94]

Luo M, Fu A, Wu R, et al. High expression of G6PD increases doxorubicin resistance in triple negative breast cancer cells by maintaining GSH level. Int J Biol Sci. 2022; 18(3): 1120-1133.

[95]

Chen X, Xu Z, Zhu Z, et al. Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro. Int J Oncol. 2018; 53(4): 1703-1712.

[96]

Yang HC, Stern A, Chiu DT. G6PD: a hub for metabolic reprogramming and redox signaling in cancer. Biomedical J. 2021; 44(3): 285-292.

[97]

Tao L, Yu H, Liang R, et al. Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells. Oncogenesis. 2019; 8(10): 57.

[98]

Meng Q, Zhang Y, Sun H, et al. Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. Redox Biol. 2024; 71: 103108.

[99]

Ghergurovich JM, García-Cañaveras JC, Wang J, et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat Chem Biol. 2020; 16(7): 731-739.

[100]

Gillis JL, Hinneh JA, Ryan NK, et al. A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. eLife. 2021; 10: e62592.

[101]

Lin R, Elf S, Shan C, et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol. 2015; 17(11): 1484-1496.

[102]

Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia. 2021; 35(6): 1539-1551.

[103]

Xu L, Bai Q, Zhang X, Yang H. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J Control Release: Official J Control Release Soc. 2017; 252: 73-82.

[104]

Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017; 25(1): 27-42.

[105]

Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014; 510(7504): 298-302.

[106]

Zhang Z, TeSlaa T, Xu X, et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nature Metabolism. 2021; 3(12): 1608-1620.

[107]

Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Structure of putative tumor suppressor ALDH1L1. Commun Biol. 2022; 5(1): 3.

[108]

Guan J, Li M, Wang Y, et al. MTHFD1 regulates the NADPH redox homeostasis in MYCN-amplified neuroblastoma. Cell Death Dis. 2024; 15(2): 124.

[109]

Zheng Y, Zhu L, Qin ZY, et al. Modulation of cellular metabolism by protein crotonylation regulates pancreatic cancer progression. Cell Rep. 2023; 42(7): 112666.

[110]

Dou C, Xu Q, Liu J, et al. SHMT1 inhibits the metastasis of HCC by repressing NOX1-mediated ROS production. J Exp Clin Cancer Res. 2019; 38(1): 70.

[111]

Dilawari A, Shah M, Ison G, et al. fda approval summary: mirvetuximab Soravtansine-Gynx for FRα-positive, platinum-resistant ovarian cancer. Clin Cancer Res. 2023; 29(19): 3835-3840.

[112]

Jones SK, Sarkar A, Feldmann DP, Hoffmann P, Merkel OM. Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials. 2017; 138: 35-45.

[113]

He L, Endress J, Cho S, et al. Suppression of nuclear GSK3 signaling promotes serine/one-carbon metabolism and confers metabolic vulnerability in lung cancer cells. Sci Adv. 2022; 8(20): eabm8786.

[114]

Nguyen TH, Vemu PL, Hoy GE, et al. Serine hydroxymethyltransferase 2 expression promotes tumorigenesis in rhabdomyosarcoma with 12q13-q14 amplification. J Clin Invest. 2021; 131(15): e138022.

[115]

Ju HQ, Lu YX, Chen DL, et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J Natl Cancer Inst. 2019; 111(6): 584-596.

[116]

Lee J, Chen X, Wang Y, et al. A novel oral inhibitor for one-carbon metabolism and checkpoint kinase 1 inhibitor as a rational combination treatment for breast cancer. Biochem Biophys Res Commun. 2021; 584: 7-14.

[117]

Zhao R, Feng T, Gao L, et al. PPFIA4 promotes castration-resistant prostate cancer by enhancing mitochondrial metabolism through MTHFD2. J Exp Clin Cancer Res. 2022; 41(1): 125.

[118]

Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta. 2011; 1807(6): 726-734.

[119]

Fang X, Zhang J, Li Y, et al. Malic enzyme 1 as a novel anti-ferroptotic regulator in hepatic ischemia/reperfusion injury. Adv Sci (Weinh). 2023; 10(13): e2205436.

[120]

Chen L, Zhang Z, Hoshino A, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 2019; 1: 404-415.

[121]

Simmen FA, Alhallak I, Simmen RCM. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. J Mol Endocrinol. 2020; 65(4): R77-r90.

[122]

Murai S, Ando A, Ebara S, Hirayama M, Satomi Y, Hara T. Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions. Oncogenesis. 2017; 6(5): e329.

[123]

Igelmann S, Lessard F, Uchenunu O, et al. A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Mol Cell. 2021; 81(18): 3848-3865.e19.

[124]

Yao P, Sun H, Xu C, et al. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions. J Biol Chem. 2017; 292(41): 17113-17120.

[125]

Zhang YJ, Wang Z, Sprous D, Nabioullin R. In silico design and synthesis of piperazine-1-pyrrolidine-2, 5-dione scaffold-based novel malic enzyme inhibitors. Bioorg Med Chem Lett. 2006; 16(3): 525-528.

[126]

Fernandes LM, Al-Dwairi A, Simmen RCM, et al. Malic enzyme 1 (ME1) is pro-oncogenic in Apc(Min/+) mice. Sci Rep. 2018; 8(1): 14268.

[127]

Yoshida T, Kawabe T, Cantley LC, Lyssiotis CA. Discovery and characterization of a novel allosteric small-molecule inhibitor of NADP(+)-dependent malic enzyme 1. Biochemistry. 2022; 61(15): 1548-1553.

[128]

Zhang C, Moore LM, Li X, Yung WK, Zhang W. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro-oncol. 2013; 15(9): 1114-1126.

[129]

Tan F, Jiang Y, Sun N, et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol Cell Proteomics. 2012; 11(2): M111.008821.

[130]

Zarei M, Lal S, Parker SJ, et al. Posttranscriptional upregulation of IDH1 by hur establishes a powerful survival phenotype in pancreatic cancer cells. Cancer Res. 2017; 77(16): 4460-4471.

[131]

Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018; 37(15): 1949-1960.

[132]

Wahl DR, Dresser J, Wilder-Romans K, et al. Glioblastoma therapy can be augmented by targeting IDH1-mediated NADPH biosynthesis. Cancer Res. 2017; 77(4): 960-970.

[133]

Liu S, Cadoux-Hudson T, Schofield CJ. Isocitrate dehydrogenase variants in cancer—cellular consequences and therapeutic opportunities. Curr Opin Chem Biol. 2020; 57: 122-134.

[134]

Alsulays BB, Aodah AH, Ahmed MM, Anwer MK. Preparation and evaluation of chitosan coated PLGA nanoparticles encapsulating ivosidenib with enhanced cytotoxicity against human liver cancer cells. Int J Nanomed. 2024; 19: 3461-3473.

[135]

Kadiyala P, Carney SV, Gauss JC, et al. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J Clin Invest. 2021; 131(4): e139542.

[136]

DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018; 378(25): 2386-2398.

[137]

Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH. Cancer-associated mutation and beyond: the emerging biology of isocitrate dehydrogenases in human disease. Sci Adv. 2019; 5(5): eaaw4543.

[138]

Mellinghoff IK, Penas-Prado M, Peters KB, et al. Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin Cancer Res. 2021; 27(16): 4491-4499.

[139]

Tasdogan A, Faubert B, Ramesh V, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 2020; 577(7788): 115-120.

[140]

Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 2022; 43(12): 969-977.

[141]

Ammar N, Hildebrandt M, Geismann C, et al. Monocarboxylate transporter-1 (MCT1)-mediated lactate uptake protects pancreatic adenocarcinoma cells from oxidative stress during glutamine scarcity thereby promoting resistance against inhibitors of glutamine metabolism. Antioxidants (Basel, Switzerland). 2023; 12(10): 1818.

[142]

García-Cañaveras JC, Chen L, Rabinowitz JD. The tumor metabolic microenvironment: lessons from lactate. Cancer Res. 2019; 79(13): 3155-3162.

[143]

Yu J, Wei Z, Li Q, et al. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform. Adv Sci (Weinh). 2021; 8(19): e2101467.

[144]

Cao Z, Xu D, Harding J, et al. Lactate oxidase nanocapsules boost T cell immunity and efficacy of cancer immunotherapy. Sci Transl Med. 2023; 15(717): eadd2712.

[145]

Benjamin D, Robay D, Hindupur SK, et al. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep. 2018; 25(11): 3047-3058.e4.

[146]

Noble RA, Bell N, Blair H, et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica. 2017; 102(7): 1247-1257.

[147]

Sun T, Liu B, Li Y, et al. Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res. 2023; 42(1): 253.

[148]

Altinoz MA, Ozpinar A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed Pharmacother. 2022; 147: 112686.

[149]

Le A, Cooper CR, Gouw AM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Nat Acad Sci USA. 2010; 107(5): 2037-2042.

[150]

Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016; 16(10): 619-634.

[151]

Hu K, Ding Y, Zhu H, et al. Glutamate dehydrogenase1 supports HIF-1α stability to promote colorectal tumorigenesis under hypoxia. EMBO J. 2023; 42(12): e112675.

[152]

Jin L, Chun J, Pan C, et al. The PLAG1-gdh1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell. 2018; 69(1): 87-99.e7.

[153]

Jin L, Li D, Alesi GN, et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 2015; 27(2): 257-270.

[154]

Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009; 69(20): 7986-7993.

[155]

Ren J, Zhou J, Liu H, et al. Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics. 2021; 11(19): 9470-9491.

[156]

Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013; 496(7443): 101-105.

[157]

Yang S, Hwang S, Kim M, Seo SB, Lee JH, Jeong SM. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018; 9(2): 55.

[158]

Korangath P, Teo WW, Sadik H, et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res. 2015; 21(14): 3263-3273.

[159]

Sun W, Luan S, Qi C, et al. Aspulvinone O, a natural inhibitor of GOT1 suppresses pancreatic ductal adenocarcinoma cells growth by interfering glutamine metabolism. Cell Commun Signal. 2019; 17(1): 111.

[160]

Kim HJ, Park MK, Byun HJ, et al. LW1497, an inhibitor of malate dehydrogenase, suppresses TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells by downregulating slug. Antioxidants (Basel, Switzerland). 2021; 10(11): 1674.

[161]

Godesi S, Han JR, Kim JK, et al. Design, synthesis and biological evaluation of novel MDH inhibitors targeting tumor microenvironment. Pharmaceuticals (Basel, Switzerland). 2023; 16(5): 683.

[162]

Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016; 7(5): e2226.

[163]

Liu Z, Liu W, Wang W, et al. CPT1A-mediated fatty acid oxidation confers cancer cell resistance to immune-mediated cytolytic killing. Proc Nat Acad Sci USA. 2023; 120(39): e2302878120.

[164]

Yang JH, Kim NH, Yun JS, et al. Snail augments fatty acid oxidation by suppression of mitochondrial ACC2 during cancer progression. Life Sci Allian. 2020; 3(7): e202000683.

[165]

Li XX, Wang ZJ, Zheng Y, et al. Nuclear receptor Nur77 facilitates melanoma cell survival under metabolic stress by protecting fatty acid oxidation. Mol Cell. 2018; 69(3): 480-492.e7.

[166]

Du Q, Tan Z, Shi F, et al. PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation. Cancer Sci. 2019; 110(6): 2050-2062.

[167]

Jiang N, Xie B, Xiao W, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun. 2022; 13(1): 1511.

[168]

Ricciardi MR, Mirabilii S, Allegretti M, et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood. 2015; 126(16): 1925-1929.

[169]

Tan Z, Xiao L, Tang M, et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics. 2018; 8(9): 2329-2347.

[170]

Wang Y, Lu JH, Wang F, et al. Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett. 2020; 473: 74-89.

[171]

Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020; 11(1): 102.

[172]

Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018; 9(2): 216-237.

[173]

Lin CC, Cheng TL, Tsai WH, et al. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep. 2012; 2: 785.

[174]

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018; 38: 1-11.

[175]

Georgiou-Siafis SK, Tsiftsoglou AS. the key role of GSH in keeping the redox balance in mammalian cells: mechanisms and significance of GSH in detoxification via formation of conjugates. Antioxidants (Basel, Switzerland). 2023; 12(11): 1953.

[176]

Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev Cell. 2021; 56(10): 1363-1393.

[177]

Yang S, Hu C, Chen X, et al. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer. 2024; 23(1): 71.

[178]

Pecchillo Cimmino T, Ammendola R, Cattaneo F, Esposito G. NOX dependent ROS generation and cell metabolism. Int J Mol Sci. 2023; 24(3): 2086.

[179]

Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020; 38(2): 167-197.

[180]

Hang L, Zhang T, Wen H, et al. Rational design of non-toxic GOx-based biocatalytic nanoreactor for multimodal synergistic therapy and tumor metastasis suppression. Theranostics. 2021; 11(20): 10001-10011.

[181]

Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019; 25: 101084.

[182]

Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioactive Materials. 2021; 6(7): 1973-1987.

[183]

Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022; 7(1): 196.

[184]

Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021; 218(6): e20210518.

[185]

Singer K, Kastenberger M, Gottfried E, et al. Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer. 2011; 128(9): 2085-2095.

[186]

Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discovery. 2022; 21(2): 141-162.

[187]

Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019; 569(7755): 270-274.

[188]

Han S, Bao X, Zou Y, et al. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci Adv. 2023; 9(29): eadg2697.

[189]

Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021; 591(7851): 645-651.

[190]

Best SA, Gubser PM, Sethumadhavan S, et al. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer. Cell Metab. 2022; 34(6): 874-887.e6.

[191]

Shang M, Yang H, Yang R, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun. 2021; 12(1): 1940.

[192]

Muri J, Kopf M. The thioredoxin system: balancing redox responses in immune cells and tumors. Eur J Immunol. 2023; 53(1): e2249948.

[193]

Hsieh MS, Ling HH, Setiawan SA, et al. Therapeutic targeting of thioredoxin reductase 1 causes ferroptosis while potentiating anti-PD-1 efficacy in head and neck cancer. Chem Biol Interact. 2024; 395: 111004.

[194]

Chakraborty P, Chatterjee S, Kesarwani P, et al. Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. J Biol Chem. 2019; 294(23): 9198-9212.

[195]

Guo D, Tong Y, Jiang X, et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 2022; 34(9): 1312-1324.e6.

[196]

Li T, Gu Y, Xu B, Kuca K, Zhang J, Wu W. CircZBTB44 promotes renal carcinoma progression by stabilizing HK3 mRNA structure. Mol Cancer. 2023; 22(1): 77.

[197]

Li Y, Han X, Lin Z, et al. G6PD activation in TNBC cells induces macrophage recruitment and M2 polarization to promote tumor progression. Cell Mol Life Sci. 2023; 80(6): 165.

[198]

Lu C, Yang D, Klement JD, et al. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. J Immunother Cancer. 2022; 10(1): e003543.

[199]

Liu T, Qi J, Wu H, et al. Phosphogluconate dehydrogenase is a predictive biomarker for immunotherapy in hepatocellular carcinoma. Front Oncol. 2022; 12: 993503.

[200]

Gicobi JK, Mao Z, DeFranco G, et al. Salvage therapy expands highly cytotoxic and metabolically fit resilient CD8(+) T cells via ME1 up-regulation. Sci Adv. 2023; 9(46): eadi2414.

[201]

Lopez E, Karattil R, Nannini F, et al. Inhibition of lactate transport by MCT-1 blockade improves chimeric antigen receptor T-cell therapy against B-cell malignancies. J Immunother Cancer. 2023; 11(6): e006287.

[202]

Miholjcic TBS, Halse H, Bonvalet M, et al. Rationale for LDH-targeted cancer immunotherapy. Eur J Cancer. 2023; 181: 166-178.

[203]

Babl N, Decking SM, Voll F, et al. MCT4 blockade increases the efficacy of immune checkpoint blockade. J Immunother Cancer. 2023; 11(10): e007349.

[204]

Jin S, Yin E, Feng C, et al. Regulating tumor glycometabolism and the immune microenvironment by inhibiting lactate dehydrogenase with platinum(iv) complexes. Chem Sci. 2023; 14(31): 8327-8337.

[205]

Wang L, Wang D, Zeng X, et al. Exploration of spatial heterogeneity of tumor microenvironment in nasopharyngeal carcinoma via transcriptional digital spatial profiling. Int J Biol Sci. 2023; 19(7): 2256-2269.

[206]

Zhou Z, Yang Z, Cui Y, et al. Identification and validation of a ferroptosis-related long non-coding RNA (FRlncRNA) signature to predict survival outcomes and the immune microenvironment in patients with clear cell renal cell carcinoma. Front Genet. 2022; 13: 787884.

[207]

Zheng P, Zhou C, Ding Y, Duan S. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023; 42(1): 103.

[208]

Wang X, Zheng C, Yao H, et al. Disulfidptosis: six riddles necessitating solutions. Int J Biol Sci. 2024; 20(3): 1042-1044.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/