Multifaceted role of TRIM28 in health and disease

Mazaher Maghsoudloo , Khatere Mokhtari , Behdokht Jamali , Amir Gholamzad , Maliheh Entezari , Mehrdad Hashemi , Junjiang Fu

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e790

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e790 DOI: 10.1002/mco2.790
REVIEW

Multifaceted role of TRIM28 in health and disease

Author information +
History +
PDF

Abstract

The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28’s multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28’s complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.

Keywords

cancer pathogenesis / cancer therapy / DNA damage response / transcriptional regulation / TRIM family / TRIM28

Cite this article

Download citation ▾
Mazaher Maghsoudloo, Khatere Mokhtari, Behdokht Jamali, Amir Gholamzad, Maliheh Entezari, Mehrdad Hashemi, Junjiang Fu. Multifaceted role of TRIM28 in health and disease. MedComm, 2024, 5(11): e790 DOI:10.1002/mco2.790

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Zhang Y, Ren Z, Yan D, Li G. The role of TRIM family in metabolic associated fatty liver disease. Front Endocrinol (Lausanne). 2023; 14: 1210330.

[2]

Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays. 2005; 27(11): 1147-1157.

[3]

Offermann A, Kang D, Watermann C, et al. Analysis of tripartite motif (TRIM) family gene expression in prostate cancer bone metastases. Carcinogenesis. 2021; 42(12): 1475-1484.

[4]

Huang N, Sun X, Li P, et al. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol. 2022; 11(1): 75.

[5]

Ozato K, Shin DM, Chang TH, Morse HC 3rd. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008; 8(11): 849-860.

[6]

Mazurek S, Oleksiewicz U, Czerwinska P, Wroblewska J, Klimczak M, Wiznerowicz M. Disruption of RING and PHD Domains of TRIM28 Evokes Differentiation in Human iPSCs. Cells. 2021; 10(8).

[7]

Oleksiewicz U, Gladych M, Raman AT, et al. TRIM28 and interacting KRAB-ZNFs control self-renewal of human pluripotent stem cells through epigenetic repression of pro-differentiation genes. Stem Cell Reports. 2017; 9(6): 2065-2080.

[8]

Aizaz M, Kiani YS, Nisar M, Shan S, Paracha RZ, Yang G. Genomic analysis, evolution and characterization of E3 ubiquitin protein ligase (TRIM) gene family in common carp (Cyprinus carpio). Genes (Basel). 2023; 14(3): 667.

[9]

Lu K, Pan Y, Huang Z, Liang H, Ding ZY, Zhang B. TRIM proteins in hepatocellular carcinoma. J Biomed Sci. 2022; 29(1): 69.

[10]

McAvera RM, Crawford LJ. TIF1 proteins in genome stability and cancer. Cancers (Basel). 2020; 12(8): 2094.

[11]

Margalit L, Strauss C, Tal A, Schlesinger S. Trim24 and Trim33 play a role in epigenetic silencing of retroviruses in embryonic stem cells. Viruses. 2020; 12(9): 1015.

[12]

Peng H, Feldman I, Rauscher FJ 3rd. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol. 2002; 320(3): 629-644.

[13]

Zhang Y, He F, Zhang Y, et al. Exploration of the regulatory relationship between KRAB-Zfp clusters and their target transposable elements via a gene editing strategy at the cluster specific linker-associated sequences by CRISPR-Cas9. Mob DNA. 2022; 13(1): 25.

[14]

Xu K, Li J, Li WX. Simulation of STAT and HP1 interaction by molecular docking. Cell Signal. 2023; 112: 110925.

[15]

Han WY, Wang J, Zhao J, et al. WDR4/TRIM28 is a novel molecular target linked to lenvatinib resistance that helps retain the stem characteristics in hepatocellular carcinomas. Cancer Lett. 2023; 568: 216259.

[16]

Lin LF, Li CF, Wang WJ, et al. Loss of ZBRK1 contributes to the increase of KAP1 and promotes KAP1-mediated metastasis and invasion in cervical cancer. PLoS One. 2013; 8(8): e73033.

[17]

Ren J, Wang S, Zong Z, et al. TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-2 virulence. Nat Commun. 2024; 15(1): 244.

[18]

Sheng Z, Zhu J, Deng YN, Gao S, Liang S. SUMOylation modification-mediated cell death. Open Biol. 2021; 11(7): 210050.

[19]

Li K, Xia Y, He J, et al. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol. 2023; 149(17): 16123-16146.

[20]

Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci. 2024; 31(1): 16.

[21]

Ivanov AV, Peng H, Yurchenko V, et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell. 2007; 28(5): 823-837.

[22]

Nowick K, Hamilton AT, Zhang H, Stubbs L. Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol Biol Evol. 2010; 27(11): 2606-2617.

[23]

Peng H, Begg GE, Schultz DC, et al. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol. 2000; 295(5): 1139-1162.

[24]

Sripathy SP, Stevens J, Schultz DC. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol. 2006; 26(22): 8623-8638.

[25]

Barde I, Laurenti E, Verp S, et al. Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J Virol. 2009; 83(11): 5574-5580.

[26]

Bunch H, Lawney BP, Burkholder A, et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics. 2016; 108(2): 64-77.

[27]

Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015; 47(3): 199-208.

[28]

Di Giorgio E, Dalla E, Tolotto V, et al. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res. 2024; 52(14): 8218-8240.

[29]

Cann KL, Dellaire G. Heterochromatin and the DNA damage response: the need to relax. Biochem Cell Biol. 2011; 89(1): 45-60.

[30]

Ziv Y, Bielopolski D, Galanty Y, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway. Nat Cell Biol. 2006; 8(8): 870-876.

[31]

White D, Rafalska-Metcalf IU, Ivanov AV, et al. The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res. 2012; 10(3): 401-414.

[32]

Bhatia N, Xiao TZ, Rosenthal KA, et al. MAGE-C2 promotes growth and tumorigenicity of melanoma cells, phosphorylation of KAP1, and DNA damage repair. J Invest Dermatol. 2013; 133(3): 759-767.

[33]

Wang C, Rauscher FJ 3rd, Cress WD, Chen J. Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem. 2007; 282(41): 29902-29909.

[34]

Lee N, Park SJ, Haddad G, et al. Interactomic analysis of REST/NRSF and implications of its functional links with the transcription suppressor TRIM28 during neuronal differentiation. Sci Rep. 2016; 6: 39049.

[35]

Orozco-Diaz R, Sanchez-Alvarez A, Hernandez-Hernandez JM, Tapia-Ramirez J. The interaction between RE1-silencing transcription factor (REST) and heat shock protein 90 as new therapeutic target against Huntington’s disease. PLoS One. 2019; 14(7): e0220393.

[36]

Ray SK, Mukherjee S. Altered expression of TRIM proteins - inimical outcome and inimitable oncogenic function in breast cancer with diverse carcinogenic hallmarks. Curr Mol Med. 2023; 23(1): 44-53.

[37]

Randolph K, Hyder U, Challa A, Perez E, D’Orso I. Functional analysis of KAP1/TRIM28 requirements for HIV-1 transcription activation. Viruses. 2024; 16(1): 116.

[38]

Qiu Y, Liu P, Ma X, et al. TRIM50 acts as a novel Src suppressor and inhibits ovarian cancer progression. Biochim Biophys Acta Mol Cell Res. 2019; 1866(9): 1412-1420.

[39]

Shi L, Fang X, Du L, et al. An E3 ligase TRIM1 promotes colorectal cancer progression via K63-linked ubiquitination and activation of HIF1alpha. Oncogenesis. 2024; 13(1): 16.

[40]

Zheng D, Zhang Y, Xia Y, Cheng F. A novel gene signature of tripartite motif family for predicting the prognosis in kidney renal clear cell carcinoma and its association with immune cell infiltration. Front Oncol. 2022; 12: 840410.

[41]

Marzano F, Caratozzolo MF, Pesole G, Sbisa E, Tullo A. TRIM proteins in colorectal cancer: TRIM8 as a promising therapeutic target in chemo resistance. Biomedicines. 2021; 9(3): 241.

[42]

Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020; 20: 228.

[43]

Wang K, Zhu W, Huang W, et al. TRIM Expression in HNSCC: exploring the link between ubiquitination, immune infiltration, and signaling pathways through bioinformatics. Int J Gen Med. 2024; 17: 2389-2405.

[44]

Xiao M, Li J, Liu Q, He X, Yang Z, Wang D. Expression and role of TRIM2 in human diseases. Biomed Res Int. 2022; 2022: 9430509.

[45]

Wang Z, Shen N, Wang Z, et al. TRIM3 facilitates ferroptosis in non-small cell lung cancer through promoting SLC7A11/xCT K11-linked ubiquitination and degradation. Cell Death Differ. 2024; 31(1): 53-64.

[46]

Teng W, Ling Y, Liu Z, et al. Advances in the antitumor mechanisms of tripartite motif-containing protein 3. J Cancer Res Clin Oncol. 2024; 150(2): 105.

[47]

Cong Y, Cui X, Shi Y, et al. Tripartite-motif 3 represses ovarian cancer progression by downregulating lactate dehydrogenase A and inhibiting AKT signaling. Mol Cell Biochem. 2024; 9(3): 241.

[48]

Roshanazadeh MR, Adelipour M, Sanaei A, Chenane H, Rashidi M. TRIM3 and TRIM16 as potential tumor suppressors in breast cancer patients. BMC Res Notes. 2022; 15(1): 312.

[49]

Song Y, Gao Z, Yan Z, Zheng C. Tripartite motif containing 3 inhibits the aggressive behaviors of papillary thyroid carcinoma and indicates lower recurrence risk. Genes Genomics. 2022; 44(4): 455-465.

[50]

Li Y, Gao J, Wang D, Liu Z, Zhang H. TRIM4 expression related to malignant progression and cisplatin resistance in osteosarcoma. Appl Biochem Biotechnol. 2024; 196(1): 233-244.

[51]

Dong ZR, Zhou W, Sun D, et al. Role of the E3 ubiquitin ligase TRIM4 in predicting the prognosis of hepatocellular carcinoma. J Cancer. 2020; 11(14): 4007-4014.

[52]

Han D, Wang L, Long L, et al. The E3 ligase TRIM4 facilitates SET ubiquitin-mediated degradation to enhance ER-alpha action in breast cancer. Adv Sci (Weinh). 2022; 9(25): e2201701.

[53]

Guo P, Ma X, Zhao W, et al. TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1-TSC2 complex. Oncogene. 2018; 37(4): 478-488.

[54]

Su H, Tang Y, Nie K, et al. Identification prognostic value and correlation with tumor-infiltrating immune cells of tripartite-motif family genes in hepatocellular carcinoma. Int J Gen Med. 2022; 15: 1349-1363.

[55]

Zhang Y, Dong P, Liu N, Yang JY, Wang HM, Geng Q. TRIM6 reduces ferroptosis and chemosensitivity by targeting SLC1A5 in lung cancer. Oxid Med Cell Longev. 2023; 2023: 9808100.

[56]

Wei C, Wu J, Liu W, Lu J, Li H, Hai B. Tripartite motif-containing protein 6 facilitates growth and migration of breast cancer through degradation of STUB1. Eur J Histochem. 2021; 65(1): 3214.

[57]

Jin J, Lu Z, Wang X, et al. E3 ubiquitin ligase TRIM7 negatively regulates NF-kappa B signaling pathway by degrading p65 in lung cancer. Cell Signal. 2020; 69: 109543.

[58]

Li K, Chen B, Xu A, et al. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol. 2022; 56: 102451.

[59]

Yuan C, Liu J, Liu L, et al. TRIM7 suppresses cell invasion and migration through inhibiting HIF-1alpha accumulation in clear cell renal cell carcinoma. Cell Biol Int. 2022; 46(4): 554-567.

[60]

Chen Q, Zhang T, Zeng R, et al. The E3 ligase TRIM7 suppresses the tumorigenesis of gastric cancer by targeting SLC7A11. Sci Rep. 2024; 14(1): 6655.

[61]

Zhou C, Zhang Z, Zhu X, et al. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine. 2020; 59: 102955.

[62]

Esposito JE, De Iuliis V, Avolio F, et al. Dissecting the functional role of the TRIM8 protein on cancer pathogenesis. Cancers (Basel). 2022; 14(9): 2309.

[63]

Chen TJ, Zheng Q, Gao F, et al. MicroRNA-665 facilitates cell proliferation and represses apoptosis through modulating Wnt5a/beta-Catenin and Caspase-3 signaling pathways by targeting TRIM8 in LUSC. Cancer Cell Int. 2021; 21(1): 215.

[64]

Wu F, Xu J, Jin X, et al. TRIM8 promotes ovarian cancer proliferation and migration by targeting VDAC2 for ubiquitination and degradation. Cancer Med. 2024; 13(11): e7396.

[65]

Yu C, Wang J, Li Y. TRIM8 promotes proliferation, invasion, and migration of cervical cancer cells by ubiquitinating and degrading SOCS1. Biochem Genet. 2024.

[66]

Wu H, Jiao Y, Guo X, Wu Z, Lv Q. METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination. J Cell Mol Med. 2024; 28(3): e18112.

[67]

Lin Z, Huang J, Zhu L, et al. TRIM9 interacts with ZEB1 to suppress esophageal cancer by promoting ZEB1 protein degradation via the UPP pathway. Biomed Res Int. 2023; 2023: 2942402.

[68]

Li L, Li Q, Zou Z, Huang Z, Chen Y. TRIM10 is downregulated in acute myeloid leukemia and plays a tumor suppressive role via regulating NF-kappaB pathway. Cancers (Basel). 2023; 15(2): 417.

[69]

Xuan T. Tripartite motif-containing protein 11 silencing inhibits proliferation and glycolysis and promotes apoptosis of esophageal squamous cell carcinoma cells by inactivating signal transduction and activation of transcription factor 3/c-Myc signaling. J Physiol Investig. 2024; 67(1): 37-46.

[70]

Zhao Z, Deng J, Lu M, et al. TRIM11, a new target of p53, facilitates the migration and invasion of nasopharyngeal carcinoma cells. Mol Biol Rep. 2023; 50(1): 731-737.

[71]

Pan Y, Yu H, Lu F. TRIM11 posttranscriptionally modulated by miR-5193 facilitates tumor growth and metastasis of prostate cancer. Technol Cancer Res Treat. 2023; 22: 15330338231178639.

[72]

Di K, Linskey ME, Bota DA. TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. Oncogene. 2013; 32(42): 5038-5047.

[73]

Chen Y, Sun J, Ma J. Proliferation and invasion of ovarian cancer cells are suppressed by knockdown of TRIM11. Oncol Lett. 2017; 14(2): 2125-2130.

[74]

Lan Q, Tan X, He P, Li W, Tian S, Dong W. TRIM11 promotes proliferation, migration, invasion and EMT of gastric cancer by activating beta-catenin signaling. Onco Targets Ther. 2021; 14: 1429-1440.

[75]

Tang J, Tian Z, Liao X, Wu G. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer. Int J Biol Sci. 2021; 17(2): 417-429.

[76]

Zhang P, Tang Y, Zhao J, et al. TRIM11 regulated by m6A modification promotes the progression of cervical cancer by PHLPP1 ubiquitination. Neoplasma. 2023; 70(5): 659-669.

[77]

Wang Z, Xu X, Tang W, Zhu Y, Hu J, Zhang X. Tripartite motif containing 11 interacts with DUSP6 to promote the growth of human osteosarcoma cells through regulating ERK1/2 pathway. Biomed Res Int. 2019; 2019: 9612125.

[78]

Dean ST, Ishikawa C, Zhu X, et al. Repression of TRIM13 by chromatin assembly factor CHAF1B is critical for AML development. Blood Adv. 2023; 7(17): 4822-4837.

[79]

Cheng H, Ding J, Tang G, et al. Human mesenchymal stem cells derived exosomes inhibit the growth of acute myeloid leukemia cells via regulating miR-23b-5p/TRIM14 pathway. Mol Med. 2021; 27(1): 128.

[80]

Su X, Wang J, Chen W, Li Z, Fu X, Yang A. Overexpression of TRIM14 promotes tongue squamous cell carcinoma aggressiveness by activating the NF-kappaB signaling pathway. Oncotarget. 2016; 7(9): 9939-9950.

[81]

Hu G, Pen W, Wang M. TRIM14 promotes breast cancer cell proliferation by inhibiting apoptosis. Oncol Res. 2019; 27(4): 439-447.

[82]

Chen J, Huang L, Quan J, Xiang D. TRIM14 regulates melanoma malignancy via PTEN/PI3K/AKT and STAT3 pathways. Aging (Albany N Y). 2021; 13(9): 13225-13238.

[83]

Sun W, Wang Y, Li D, Wu Y, Ji Q, Sun T. Tripartite motif containing 14: An oncogene in papillary thyroid carcinoma. Biochem Biophys Res Commun. 2020; 521(2): 360-367.

[84]

Xu W, Zhuang L, Zhu H, Mao A, Zhou J, Wang L. TRIM14 overexpression induces chemoresistance and malignant behaviors of hepatocellular carcinoma cells by activating the STAT3/HIF-1alpha pathway. Int J Mol Sci. 2023; 24(16): 12589.

[85]

Zhang L, Qin B, Zou B, et al. Knockdown of TRIM15 inhibits the proliferation, migration and invasion of esophageal squamous cell carcinoma cells through inactivation of the Wnt/beta-catenin signaling pathway. J Bioenerg Biomembr. 2021; 53(2): 213-222.

[86]

Han X, Huang C, Qu X, et al. Tripartite motif-containing 15 overexpression in non-small cell lung cancer is associated with poor patient prognoses. J Cancer. 2019; 10(4): 843-852.

[87]

Spirina LV, Yunusova NV, Kondakova IV, Tarasenko NV. Transcription factors Brn-3alpha and TRIM16 in cancers, association with hormone reception. Heliyon. 2019; 5(8): e02090.

[88]

Afshar J, Mehrzad J, Mehrad-Majd H, Goshayeshi L, Saeidi J. Prognostic significance of tripartite motif containing 16 expression in patients with gastric cancer. Asian Pac J Cancer Prev. 2021; 22(8): 2445-2451.

[89]

Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To ubiquitinate or not to ubiquitinate: TRIM17 in cell life and death. Cells. 2021; 10(5): 1235.

[90]

Shen J, Yang H, Qiao X, et al. The E3 ubiquitin ligase TRIM17 promotes gastric cancer survival and progression via controlling BAX stability and antagonizing apoptosis. Cell Death Differ. 2023; 30(10): 2322-2335.

[91]

Guo D, Zhou S, Liu R, et al. NEK2 contributes to radioresistance in esophageal squamous cell carcinoma by inducing protective autophagy via regulating TRIM21. Cancer Cell Int. 2024; 24(1): 179.

[92]

von Bernuth A, Ribbat-Idel J, Klapper L, et al. TRIM21 expression as a prognostic biomarker for progression-free survival in HNSCC. Int J Mol Sci. 2023; 24(6): 5140.

[93]

Li Y, Bao L, Zheng H, et al. E3 ubiquitin ligase TRIM21 targets TIF1gamma to regulate beta-catenin signaling in glioblastoma. Theranostics. 2023; 13(14): 4919-4935.

[94]

Li JY, Zhao Y, Gong S, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun. 2023; 14(1): 865.

[95]

He L, Zhou J, Ding D, Jiang Y, Yang R, Li Z. MiR-99a-3p downregulates TRIM21 to promote gastric cancer development. Mol Cell Biochem. 2024.

[96]

Wu Z, Wang Y, Yu Z, et al. TRIM21-a potential biomarker for the prognosis of thyroid cancer. Exp Ther Med. 2022; 24(6): 761.

[97]

Yang Y, Zuo S, Li W, et al. TRIM21 promotes tumor progression and cancer stemness in cervical squamous cell carcinoma. Pathol Res Pract. 2023; 248: 154710.

[98]

Xia Y, Zhao J, Yang C. Identification of key genes and pathways for melanoma in the TRIM family. Cancer Med. 2020; 9(23): 8989-9005.

[99]

Fei X, Dou YN, Sun K, et al. TRIM22 promotes the proliferation of glioblastoma cells by activating MAPK signaling and accelerating the degradation of Raf-1. Exp Mol Med. 2023; 55(6): 1203-1217.

[100]

Tao T, Zhang Y, Guan C, Wang S, Liu X, Wang M. Ubiquitin ligase TRIM22 inhibits ovarian cancer malignancy via TCF4 degradation. Mol Cancer Res. 2024; 22(10): 943-956.

[101]

Yang Y, Hao X, Zhang J, et al. The E3 ligase TRIM22 functions as a tumor suppressor in breast cancer by targeting CCS for proteasomal degradation to inhibit STAT3 signaling. Cancer Lett. 2024; 600: 217157.

[102]

Gu X, Min W, Zeng Y, Fan N, Qian Q. Aberrant KAT2A accumulations render TRIM22-low melanoma sensitive to Notch1 inhibitors via epigenetic reprogramming. J Transl Med. 2023; 21(1): 443.

[103]

Zhou Z, Gao W, Yuan B, Zhang S, Wang K, Du T. TRIM22 inhibits the proliferation of gastric cancer cells through the Smad2 protein. Cell Death Discov. 2021; 7(1): 234.

[104]

Yao Y, Liu Z, Guo H, et al. Elevated TRIM23 expression predicts poor prognosis in Chinese gastric cancer. Pathol Res Pract. 2018; 214(12): 2062-2068.

[105]

Liu M, Zhang X, Cai J, et al. Downregulation of TRIM58 expression is associated with a poor patient outcome and enhances colorectal cancer cell invasion. Oncol Rep. 2018; 40(3): 1251-1260.

[106]

Xue Y, Ge W, Shi W, Huang W, Wang R. Prognostic role of tripartite motif containing 24 in various human solid malignant neoplasms: An updated meta-analysis and systematic review. Medicine (Baltimore). 2021; 100(51): e28383.

[107]

Jiang T, Mao H, Chen Q, et al. Trim24 prompts tumor progression via inducing EMT in renal cell carcinoma. Open Med (Wars). 2020; 15(1): 1153-1162.

[108]

Lin L, Zhao W, Sun B, Wang X, Liu Q. Overexpression of TRIM24 is correlated with the progression of human cervical cancer. Am J Transl Res. 2017; 9(2): 620-628.

[109]

Tecalco-Cruz AC, Abraham-Juarez MJ, Solleiro-Villavicencio H, Ramirez-Jarquin JO. TRIM25: a central factor in breast cancer. World J Clin Oncol. 2021; 12(8): 646-655.

[110]

Chen Y, Xu X, Ding K, et al. TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO. J Exp Clin Cancer Res. 2024; 43(1): 39.

[111]

Mahlokozera T, Patel B, Chen H, et al. Competitive binding of E3 ligases TRIM26 and WWP2 controls SOX2 in glioblastoma. Nat Commun. 2021; 12(1): 6321.

[112]

Lyu XM, Zhu XW, Zhao M, et al. A regulatory mutant on TRIM26 conferring the risk of nasopharyngeal carcinoma by inducing low immune response. Cancer Med. 2018; 7(8): 3848-3861.

[113]

Wang K, Chai L, Qiu Z, Zhang Y, Gao H, Zhang X. Overexpression of TRIM26 suppresses the proliferation, metastasis, and glycolysis in papillary thyroid carcinoma cells. J Cell Physiol. 2019; 234(10): 19019-19027.

[114]

Lu T, Wu Y. Tripartite motif containing 26 is a positive predictor for endometrial carcinoma patients and regulates cell survival in endometrial carcinoma. Horm Metab Res. 2022; 54(12): 859-865.

[115]

Xia K, Zheng D, Wei Z, Liu W, Guo W. TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis. 2023; 14(8): 529.

[116]

Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol. 2022; 10: 1004429.

[117]

Ma L, Yao N, Chen P, Zhuang Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int. 2019; 19: 283.

[118]

Xiao J, Luo H, Gui S, et al. TRIM27 promotes the Warburg effect and glioblastoma progression via inhibiting the LKB1/AMPK/mTOR axis. Am J Cancer Res. 2024; 14(7): 3468-3482.

[119]

Zhao C, Zhao Y, Zhao J, et al. Acute myeloid leukemia cell-derived extracellular vesicles carrying microRNA-548ac regulate hematopoietic function via the TRIM28/STAT3 pathway. Cancer Gene Ther. 2022; 29(7): 918-929.

[120]

Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet. 2024; 15: 1431564.

[121]

Liu B, Li X, Liu F, et al. Expression and significance of TRIM 28 in squamous carcinoma of esophagus. Pathol Oncol Res. 2019; 25(4): 1645-1652.

[122]

Tsang SV, Rainusso N, Liu M, et al. LncRNA PVT-1 promotes osteosarcoma cancer stem-like properties through direct interaction with TRIM28 and TSC2 ubiquitination. Oncogene. 2022; 41(50): 5373-5384.

[123]

Li D, Cheng J, Zhang W, et al. Tripartite motif-containing 28 (TRIM28) expression and cordycepin inhibition in progression, prognosis, and therapeutics of patients with breast invasive carcinoma. J Cancer. 2024; 15(13): 4374-4385.

[124]

Hsu CY, Yanagi T, Ujiie H. TRIM29 in cutaneous squamous cell carcinoma. Front Med (Lausanne). 2021; 8: 804166.

[125]

Guo Y, Lin P, Hua Y, Wang C. TRIM31: a molecule with a dual role in cancer. Front Oncol. 2022; 12: 1047177.

[126]

Ning L, Ko JM, Yu VZ, et al. Nasopharyngeal carcinoma MHC region deep sequencing identifies HLA and novel non-HLA TRIM31 and TRIM39 loci. Commun Biol. 2020; 3(1): 759.

[127]

Wei Z, Liu Y, Wang Y, et al. Downregulation of Foxo3 and TRIM31 by miR-551b in side population promotes cell proliferation, invasion, and drug resistance of ovarian cancer. Med Oncol. 2016; 33(11): 126.

[128]

Sang SQ, Zhao YJ, Wang M, Zhong XQ, Yang ZC, Lu MM. TRIM31 promotes the progression of oral squamous cell carcinoma through upregulating AKT phosphorylation and subsequent cellular glycolysis. Neoplasma. 2023; 70(3): 402-415.

[129]

Xu X, Qi J, Yang J, et al. Up-regulation of TRIM32 associated with the poor prognosis of acute myeloid leukemia by integrated bioinformatics analysis with external validation. Front Oncol. 2022; 12: 848395.

[130]

Bawa S, Piccirillo R, Geisbrecht ER. TRIM32: a multifunctional protein involved in muscle homeostasis, glucose metabolism, and tumorigenesis. Biomolecules. 2021; 11(3): 408.

[131]

Wu Y, Duan Y, Han W, et al. Deubiquitinase YOD1 suppresses tumor progression by stabilizing E3 ligase TRIM33 in head and neck squamous cell carcinoma. Cell Death Dis. 2023; 14(8): 517.

[132]

Wang F, Wang W, Wu X, et al. Downregulation of TRIM33 promotes survival and epithelial-mesenchymal transition in gastric cancer. Technol Cancer Res Treat. 2022; 21: 15330338221114505.

[133]

Chen M, Lingadahalli S, Narwade N, et al. TRIM33 drives prostate tumor growth by stabilizing androgen receptor from Skp2-mediated degradation. EMBO Rep. 2022; 23(8): e53468.

[134]

Liang M, Wang L, Sun Z, et al. E3 ligase TRIM15 facilitates non-small cell lung cancer progression through mediating Keap1-Nrf2 signaling pathway. Cell Commun Signal. 2022; 20(1): 62.

[135]

Zhang J, Xu Z, Yu B, Xu J, Yu B. Tripartite motif containing 35 contributes to the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo. Biosci Rep. 2020; 40(4): BSR20200065.

[136]

Zhao B, Qiao G, Li J, et al. TRIM36 suppresses cell growth and promotes apoptosis in human esophageal squamous cell carcinoma cells by inhibiting Wnt/beta-catenin signaling pathway. Hum Cell. 2022; 35(5): 1487-1498.

[137]

Kimura N, Yamada Y, Takayama KI, et al. Androgen-responsive tripartite motif 36 enhances tumor-suppressive effect by regulating apoptosis-related pathway in prostate cancer. Cancer Sci. 2018; 109(12): 3840-3852.

[138]

Mascaro M, Lages I, Meroni G. Microtubular TRIM36 E3 ubiquitin ligase in embryonic development and spermatogenesis. Cells. 2022; 11(2): 246.

[139]

Brigant B, Metzinger-Le Meuth V, Rochette J, Metzinger L. TRIMming down to TRIM37: relevance to inflammation, cardiovascular disorders, and cancer in MULIBREY nanism. Int J Mol Sci. 2018; 20(1).

[140]

Zhang K, Lin G, Nie Z, et al. TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-kappaB/NLRP3 pathway. Mol Cell Biochem. 2024; 479(8): 2069-2079.

[141]

Wang FQ, Han Y, Yao W, Yu J. Prognostic relevance of tripartite motif containing 24 expression in colorectal cancer. Pathol Res Pract. 2017; 213(10): 1271-1275.

[142]

Ke X, Li L, Li J, Zheng M, Liu P. Anti-oncogenic PTEN induces ovarian cancer cell senescence by targeting P21. Cell Biol Int. 2022; 46(1): 118-128.

[143]

Xiao G, Yang Q, Bao Z, Mao H, Zhang Y, Lin S. Expression of tripartite motif-containing 44 and its prognostic and clinicopathological value in human malignancies:a meta-analysis. BMC Cancer. 2020; 20(1): 525.

[144]

Yu Y, Li S, Sun J, et al. Overexpression of TRIM44 mediates the NF-kappaB pathway to promote the progression of ovarian cancer. Genes Genomics. 2024; 46(6): 689-699.

[145]

Wang W, Huang C, Luo P, et al. Circular RNA circWDR27 promotes papillary thyroid cancer progression by regulating miR-215-5p/TRIM44 axis. Onco Targets Ther. 2021; 14: 3281-3293.

[146]

Liu S, Meng F, Ding J, et al. High TRIM44 expression as a valuable biomarker for diagnosis and prognosis in cervical cancer. Biosci Rep. 2019; 39(3).

[147]

Tan Y, Yao H, Hu J, Liu L. Knockdown of TRIM44 inhibits the proliferation and invasion in prostate cancer cells. Oncol Res. 2017; 25(8): 1253-1259.

[148]

Li QH, Sui LP, Zhao YH, et al. Tripartite motif-containing 44 is involved in the tumorigenesis of laryngeal squamous cell carcinoma, and its expression is downregulated by nuciferine. Tohoku J Exp Med. 2021; 254(1): 17-23.

[149]

Huo S, Dou D. Circ_0056285 regulates proliferation, apoptosis and glycolysis of osteosarcoma cells via miR-1244/TRIM44 axis. Cancer Manag Res. 2021; 13: 1257-1270.

[150]

Peng X, Wen Y, Zha L, et al. TRIM45 suppresses the development of non-small cell lung cancer. Curr Mol Med. 2020; 20(4): 299-306.

[151]

Zhang J, Zhang C, Cui J, et al. TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination. Cell Death Dis. 2017; 8(5): e2831.

[152]

Tantai J, Pan X, Chen Y, Shen Y, Ji C. TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis. 2022; 13(3): 285.

[153]

Zhang L, Li X, Dong W, Sun C, Guo D, Zhang L. Mmu-miR-1894-3p inhibits cell proliferation and migration of breast cancer cells by targeting Trim46. Int J Mol Sci. 2016; 17(4): 609.

[154]

Wang X, Fu Y, Xing Y. TRIM47 promotes ovarian cancer cell proliferation, migration, and invasion by activating STAT3 signaling. Clinics (Sao Paulo). 2022; 77: 100122.

[155]

Xia Y, Wei Z, Huang W, Wei X, He Y. Trim47 overexpression correlates with poor prognosis in gastric cancer. Neoplasma. 2021; 68(2): 307-316.

[156]

Xue LP, Lu B, Gao BB, et al. Overexpression of tripartite motif-containing 48 (TRIM48) inhibits growth of human glioblastoma cells by suppressing extracellular signal regulated kinase 1/2 (ERK1/2) pathway. Med Sci Monit. 2019; 25: 8422-8429.

[157]

Wang Y, Song W, Zhou S, et al. The genomic and transcriptome characteristics of lung adenocarcinoma patients with previous breast cancer. BMC Cancer. 2022; 22(1): 618.

[158]

Gu C, Xia Y, Lu C, et al. TRIM50 inhibits glycolysis and the malignant progression of gastric cancer by ubiquitinating PGK1. Int J Biol Sci. 2024; 20(9): 3656-3674.

[159]

Benke S, Agerer B, Haas L, et al. Human tripartite motif protein 52 is required for cell context-dependent proliferation. Oncotarget. 2018; 9(17): 13565-13581.

[160]

Cao H, Li Y, Chen L, et al. Tripartite motif-containing 54 promotes gastric cancer progression by upregulating K63-linked ubiquitination of filamin C. Asia Pac J Clin Oncol. 2022; 18(6): 669-677.

[161]

Guo T, Zhang Z, Zhu L, et al. TRIM55 suppresses malignant biological behavior of lung adenocarcinoma cells by increasing protein degradation of Snail1. Cancer Biol Ther. 2022; 23(1): 17-26.

[162]

Li WW, Yuan H, Kong S, Tian SB. E3 ubiquitin ligase TRIM55 promotes metastasis of gastric cancer cells by mediating epithelial-mesenchymal transition. World J Gastrointest Oncol. 2022; 14(11): 2183-2194.

[163]

Fu L, Zhou X, Jiao Q, Chen X. The functions of TRIM56 in antiviral innate immunity and tumorigenesis. Int J Mol Sci. 2023; 24(5): 5046.

[164]

Shang R, Chen J, Gao Y, Chen J, Han G. TRIM58 interacts with ZEB1 to suppress NSCLC tumor malignancy by promoting ZEB1 protein degradation via UPP. Dis Markers. 2023; 2023: 5899662.

[165]

Zheng YZ, Li JY, Ning LW, Xie N. Predictive and prognostic value of TRIM58 protein expression in patients with breast cancer receiving neoadjuvant chemotherapy. Breast Cancer (Dove Med Press). 2022; 14: 475-487.

[166]

Gan Y, Cao C, Li A, et al. Silencing of the TRIM58 gene by aberrant promoter methylation is associated with a poor patient outcome and promotes cell proliferation and migration in clear cell renal cell carcinoma. Front Mol Biosci. 2021; 8: 655126.

[167]

Yuan P, Zhou Y, Wang R, et al. TRIM58 interacts with pyruvate kinase M2 to inhibit tumorigenicity in human osteosarcoma cells. Biomed Res Int. 2020; 2020: 8450606.

[168]

Wang M, Chao C, Luo G, et al. Prognostic significance of TRIM59 for cancer patient survival: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(48): e18024.

[169]

Sang Y, Li Y, Song L, et al. TRIM59 promotes gliomagenesis by inhibiting TC45 dephosphorylation of STAT3. Cancer Res. 2018; 78(7): 1792-1804.

[170]

Tong X, Mu P, Zhang Y, Zhao J, Wang X. TRIM59, amplified in ovarian cancer, promotes tumorigenesis through the MKP3/ERK pathway. J Cell Physiol. 2020; 235(11): 8236-8245.

[171]

Tian Y, Guo Y, Zhu P, et al. TRIM59 loss in M2 macrophages promotes melanoma migration and invasion by upregulating MMP-9 and Madcam1. Aging (Albany N Y). 2019; 11(19): 8623-8641.

[172]

Liu G, Song J, Zhao Y, Zhang L, Qin J, Cui Y. Tripartite motif containing 59 (TRIM59) promotes esophageal cancer progression via promoting MST4 expression and ERK pathway. J Recept Signal Transduct Res. 2020; 40(5): 471-478.

[173]

Li J, Cao H, Yang J, Wang B. IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma. Sci Rep. 2024; 14(1): 3014.

[174]

Liu TY, Chen J, Shang CL, et al. Tripartite motif containing 62 is a novel prognostic marker and suppresses tumor metastasis via c-Jun/Slug signaling-mediated epithelial-mesenchymal transition in cervical cancer. J Exp Clin Cancer Res. 2016; 35(1): 170.

[175]

Wang XM, Zhang Y, Mannan R, et al. TRIM63 is a sensitive and specific biomarker for MiT family aberration-associated renal cell carcinoma. Mod Pathol. 2021; 34(8): 1596-1607.

[176]

He J, Zhang Y, Yao B, Wang L, Tian Z. Tripartite motif containing 63, regulated by E26 transformation specific variant 4, facilitates the thyroid carcinoma progression and the AKT, p38, and ERK signaling pathways. Mol Cell Endocrinol. 2022; 550: 111639.

[177]

Miao C, Liang C, Li P, et al. TRIM37 orchestrates renal cell carcinoma progression via histone H2A ubiquitination-dependent manner. J Exp Clin Cancer Res. 2021; 40(1): 195.

[178]

Lu Y, Xiao Y, Yang J, et al. TRIM65 promotes malignant cell behaviors in triple-negative breast cancer by impairing the stability of LATS1 protein. Oxid Med Cell Longev. 2022; 2022: 4374978.

[179]

Zhang Q, Li Y, Zhu Q, et al. TRIM65 promotes renal cell carcinoma through ubiquitination and degradation of BTG3. Cell Death Dis. 2024; 15(5): 355.

[180]

Liu C, Sun W, Yang K, Xia B. Knockdown of TRIM65 suppressed the proliferation and invasiveness of gastric cancer cells by restricting the ubiquitin degradation of PPM1A. Exp Cell Res. 2022; 416(2): 113154.

[181]

Wang XY, Mao HW, Guan XH, et al. TRIM65 promotes cervical cancer through selectively degrading p53-mediated inhibition of autophagy and apoptosis. Front Oncol. 2022; 12: 853935.

[182]

Song Y, Meng L, Yu J, Cao Z, Sun J, Zhao H. TRIM66 overexpression promotes glioma progression and regulates glucose uptake through cMyc/GLUT3 signaling. Cancer Manag Res. 2021; 13: 5187-5201.

[183]

Zhang H, Zheng Y, Zhang Y. Knockdown of TRIM66 in MDA-MB-468 triple negative breast cancer cell line suppresses proliferation and promotes apoptosis through EGFR signaling. Pol J Pathol. 2021; 72(2): 160-166.

[184]

Jiang J, Dong X, Liu J, et al. TRIM67 promotes non-small cell lung cancer development by positively regulating the notch pathway through DLK1 ubiquitination. J Cancer. 2024; 15(7): 1870-1879.

[185]

Jiang J, Liu D, Xu G, et al. TRIM68, PIKFYVE, and DYNLL2: the possible novel autophagy-and immunity-associated gene biomarkers for osteosarcoma prognosis. Front Oncol. 2021; 11: 643104.

[186]

Connacher RP, Goldstrohm AC. Molecular and biological functions of TRIM-NHL RNA-binding proteins. Wiley Interdiscip Rev RNA. 2021; 12(2): e1620.

[187]

Ren H, Xu Y, Wang Q, et al. E3 ubiquitin ligase tripartite motif-containing 71 promotes the proliferation of non-small cell lung cancer through the inhibitor of kappaB-alpha/nuclear factor kappaB pathway. Oncotarget. 2018; 9(13): 10880-10890.

[188]

Chen Y, Hao Q, Wang J, et al. Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53. Cell Death Dis. 2019; 10(10): 737.

[189]

Wang Z, Li H, Wang H, et al. TRIM72 exerts antitumor effects in breast cancer and modulates lactate production and MCT4 promoter activity by interacting with PPP3CA. Anticancer Drugs. 2022; 33(5): 489-501.

[190]

Pineda CT, Ramanathan S, Fon Tacer K, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 2015; 160(4): 715-728.

[191]

Pineda CT, Potts PR. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy. 2015; 11(5): 844-846.

[192]

Venkov CD, Link AJ, Jennings JL, et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest. 2007; 117(2): 482-491.

[193]

Hu C, Zhang S, Gao X, et al. Roles of Kruppel-associated Box (KRAB)-associated co-repressor KAP1 Ser-473 phosphorylation in DNA damage response. J Biol Chem. 2012; 287(23): 18937-18952.

[194]

Chen L, Chen DT, Kurtyka C, et al. Tripartite motif containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions. J Biol Chem. 2012; 287(48): 40106-40118.

[195]

Jin X, Pan Y, Wang L, et al. MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation. Oncogenesis. 2017; 6(4): e312.

[196]

Okamoto K, Kitabayashi I, Taya Y. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun. 2006; 351(1): 216-222.

[197]

Wang C, Ivanov A, Chen L, et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005; 24(18): 3279-3290.

[198]

Wei C, Cheng J, Zhou B, et al. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci Rep. 2016; 6: 29822.

[199]

Mita P, Savas JN, Briggs EM, et al. URI regulates KAP1 phosphorylation and transcriptional repression via PP2A phosphatase in prostate cancer cells. J Biol Chem. 2016; 291(49): 25516-25528.

[200]

Yang Y, Fiskus W, Yong B, et al. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci USA. 2013; 110(17): 6841-6846.

[201]

Zhang RY, Liu ZK, Wei D, et al. UBE2S interacting with TRIM28 in the nucleus accelerates cell cycle by ubiquitination of p27 to promote hepatocellular carcinoma development. Signal Transduct Target Ther. 2021; 6(1): 64.

[202]

Yang Y, Lu H, Chen C, Lyu Y, Cole RN, Semenza GL. HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat Commun. 2022; 13(1): 316.

[203]

Chang YJ, Lin S, Kang ZF, et al. Acetylation-mimic mutation of TRIM28-Lys304 to Gln attenuates the interaction with KRAB-zinc-finger proteins and affects gene expression in leukemic K562 cells. Int J Mol Sci. 2023; 24(12): 9830.

[204]

Song T, Lv S, Ma X, et al. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy. J Biol Chem. 2023; 299(5): 104621.

[205]

Oo JA, Irmer B, Gunther S, et al. ZNF354C is a transcriptional repressor that inhibits endothelial angiogenic sprouting. Sci Rep. 2020; 10(1): 19079.

[206]

Cui J, Hu J, Ye Z, et al. TRIM28 protects CARM1 from proteasome-mediated degradation to prevent colorectal cancer metastasis. Sci Bull (Beijing). 2019; 64(14): 986-997.

[207]

Czerwinska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci. 2017; 24(1): 63.

[208]

Huang Z, Dong J, Guo T, et al. TRIM28 regulates proliferation of gastric cancer cells partly through SRF/IDO1 axis. J Cancer. 2024; 15(13): 4417-4429.

[209]

Cui Y, Yang S, Fu X, Feng J, Xu S, Ying G. High levels of KAP1 expression are associated with aggressive clinical features in ovarian cancer. Int J Mol Sci. 2014; 16(1): 363-377.

[210]

Qi ZX, Cai JJ, Chen LC, et al. TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol. 2016; 126(1): 19-26.

[211]

Jovcevska I, Zupanec N, Urlep Z, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget. 2017; 8(27): 44141-44158.

[212]

Czerwinska P, Shah PK, Tomczak K, et al. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget. 2017; 8(1): 863-882.

[213]

Zhang W, Cai Z, Kong M, et al. Prognostic significance of TRIM28 expression in patients with breast carcinoma. Open Med (Wars). 2021; 16(1): 472-480.

[214]

Cassano M, Offner S, Planet E, et al. Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice. Hepatology. 2017; 66(1): 235-251.

[215]

Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018; 18(2): 89-102.

[216]

Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997; 387(6630): 296-299.

[217]

Jin JO, Lee GD, Nam SH, et al. Sequential ubiquitination of p53 by TRIM28, RLIM, and MDM2 in lung tumorigenesis. Cell Death Differ. 2021; 28(6): 1790-1803.

[218]

Liu L, Zhang L, Wang J, et al. Downregulation of TRIM28 inhibits growth and increases apoptosis of nude mice with non-small cell lung cancer xenografts. Mol Med Rep. 2018; 17(1): 835-842.

[219]

Chen Y, Cheng H, Long H. Tripartite motif containing 28 (TRIM28) promotes the growth and migration of endometrial carcinoma cells by regulating the AKT/mTOR signaling pathway. Gen Physiol Biophys. 2021; 40(3): 245-252.

[220]

Qi Z, Cai S, Cai J, et al. miR-491 regulates glioma cells proliferation by targeting TRIM28 in vitro. BMC Neurol. 2016; 16(1): 248.

[221]

Zhou Y, Wang B, Wang Y, Chen G, Lian Q, Wang H. miR-140-3p inhibits breast cancer proliferation and migration by directly regulating the expression of tripartite motif 28. Oncol Lett. 2019; 17(4): 3835-3841.

[222]

Gao X, Li Q, Chen G, He H, Ma Y. MAGEA3 promotes proliferation and suppresses apoptosis in cervical cancer cells by inhibiting the KAP1/p53 signaling pathway. Am J Transl Res. 2020; 12(7): 3596-3612.

[223]

Fernandez-Marrero Y, Bachmann D, Lauber E, Kaufmann T. Negative regulation of BOK expression by recruitment of TRIM28 to regulatory elements in its 3’ untranslated region. iScience. 2018; 9: 461-474.

[224]

Park HH, Kim HR, Park SY, et al. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer. 2021; 20(1): 107.

[225]

Lionnard L, Duc P, Brennan MS, et al. TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 2019; 26(5): 902-917.

[226]

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15(3): 178-196.

[227]

Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011; 9(12): 1608-1620.

[228]

Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016; 15: 18.

[229]

Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med. 2015; 4: 6.

[230]

Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol. 2008; 9(11): 846-859.

[231]

Ansieau S, Collin G, Hill L. EMT or EMT-promoting transcription factors, where to focus the light? Front Oncol. 2014; 4: 353.

[232]

Okada H, Danoff TM, Fischer A, Lopez-Guisa JM, Strutz F, Neilson EG. Identification of a novel cis-acting element for fibroblast-specific transcription of the FSP1 gene. Am J Physiol. 1998; 275(2): F306-F314.

[233]

Yu C, Zhan L, Jiang J, et al. KAP-1 is overexpressed and correlates with increased metastatic ability and tumorigenicity in pancreatic cancer. Med Oncol. 2014; 31(7): 25.

[234]

Chen L, Munoz-Antonia T, Cress WD. Trim28 contributes to EMT via regulation of E-cadherin and N-cadherin in lung cancer cell lines. PLoS One. 2014; 9(7): e101040.

[235]

Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009; 9(4): 265-273.

[236]

Young RA. Control of the embryonic stem cell state. Cell. 2011; 144(6): 940-954.

[237]

Cammas F, Mark M, Dolle P, Dierich A, Chambon P, Losson R. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development. 2000; 127(13): 2955-2963.

[238]

Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 2009; 23(7): 837-848.

[239]

Seki Y, Kurisaki A, Watanabe-Susaki K, et al. TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. Proc Natl Acad Sci USA. 2010; 107(24): 10926-10931.

[240]

Cheng B, Ren X, Kerppola TK. KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol Cell Biol. 2014; 34(11): 2075-2091.

[241]

Miles DC, de Vries NA, Gisler S, et al. TRIM28 is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells. 2017; 35(1): 147-157.

[242]

Klimczak M, Czerwinska P, Mazurek S, et al. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation. Stem Cell Res. 2017; 23: 163-172.

[243]

Li J, Xi Y, Li W, et al. TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene. 2017; 36(21): 2991-3001.

[244]

Czerwinska P, Kaminska B. Regulation of breast cancer stem cell features. Contemp Oncol (Pozn). 2015; 19(1A): A7-A15.

[245]

Kim YS, Potashnikova DM, Gisina AM, et al. TRIM28 is a novel regulator of CD133 expression associated with cancer stem cell phenotype. Int J Mol Sci. 2022; 23(17): 9874.

[246]

Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis. 2011; 32(7): 955-963.

[247]

Maycotte P, Jones KL, Goodall ML, Thorburn J, Thorburn A. Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol Cancer Res. 2015; 13(4): 651-658.

[248]

Yang MC, Wang HC, Hou YC, Tung HL, Chiu TJ, Shan YS. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer. 2015; 14: 179.

[249]

Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol. 2010; 12(9): 831-835.

[250]

Cicchini M, Karantza V, Xia B. Molecular pathways: autophagy in cancer—a matter of timing and context. Clin Cancer Res. 2015; 21(3): 498-504.

[251]

Barde I, Rauwel B, Marin-Florez RM, et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science. 2013; 340(6130): 350-353.

[252]

Lee E, Iskow R, Yang L, et al. Landscape of somatic retrotransposition in human cancers. Science. 2012; 337(6097): 967-971.

[253]

Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science. 2004; 303(5664): 1626-1632.

[254]

Rowe HM, Jakobsson J, Mesnard D, et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010; 463(7278): 237-240.

[255]

Rowe HM, Kapopoulou A, Corsinotti A, et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res. 2013; 23(3): 452-461.

[256]

Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007; 131(1): 46-57.

[257]

Van Meter M, Kashyap M, Rezazadeh S, et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun. 2014; 5: 5011.

[258]

Castro-Diaz N, Ecco G, Coluccio A, et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 2014; 28(13): 1397-1409.

[259]

Turelli P, Castro-Diaz N, Marzetta F, et al. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 2014; 24(8): 1260-1270.

[260]

Iskow RC, McCabe MT, Mills RE, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010; 141(7): 1253-1261.

[261]

Mita P, Savas JN, Ha S, Djouder N, Yates JR 3rd, Logan SK. Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One. 2013; 8(5): e63879.

[262]

Ma X, Jia S, Wang G, et al. TRIM28 promotes the escape of gastric cancer cells from immune surveillance by increasing PD-L1 abundance. Signal Transduct Target Ther. 2023; 8(1): 246.

[263]

Deng B, Zhang S, Zhang Y, Miao Y, Meng X, Guo K. Knockdown of Tripartite Motif Containing 28 suppresses the migration, invasion and epithelial-mesenchymal transition in ovarian carcinoma cells through down-regulation of Wnt/beta-catenin signaling pathway. Neoplasma. 2017; 64(6): 893-900.

[264]

Tan H, Qi J, Chu G, Liu Z. Tripartite motif 16 Inhibits the migration and invasion in ovarian cancer cells. Oncol Res. 2017; 25(4): 551-558.

[265]

Lan H, Lin C, Yuan H. Knockdown of KRAB domain-associated protein 1 suppresses the proliferation, migration and invasion of thyroid cancer cells by regulating P68/DEAD box protein 5. Bioengineered. 2022; 13(5): 11945-11957.

[266]

Fitzgerald S, Espina V, Liotta L, et al. Stromal TRIM28-associated signaling pathway modulation within the colorectal cancer microenvironment. J Transl Med. 2018; 16(1): 89.

[267]

Agarwal N, Rinaldetti S, Cheikh BB, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci USA. 2021; 118(38): e2102423118.

[268]

Peng Y, Zhang M, Jiang Z, Jiang Y. TRIM28 activates autophagy and promotes cell proliferation in glioblastoma. Onco Targets Ther. 2019; 12: 397-404.

[269]

Zhang PP, Ding DZ, Shi B, et al. Expression of TRIM28 correlates with proliferation and Bortezomib-induced apoptosis in B-cell non-Hodgkin lymphoma. Leuk Lymphoma. 2018; 59(11): 2639-2649.

[270]

Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun. 2018; 9(1): 5007.

[271]

Lee AK, Pan D, Bao X, Hu M, Li F, Li CY. Endogenous retrovirus activation as a key mechanism of anti-tumor immune response in radiotherapy. Radiat Res. 2020; 193(4): 305-317.

[272]

Lin J, Guo D, Liu H, et al. The SETDB1-TRIM28 complex suppresses antitumor immunity. Cancer Immunol Res. 2021; 9(12): 1413-1424.

[273]

Kamitani S, Ohbayashi N, Ikeda O, et al. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem Biophys Res Commun. 2008; 370(2): 366-370.

[274]

Farrell PJ. Epstein-Barr virus and cancer. Annu Rev Pathol. 2019; 14: 29-53.

[275]

Gehrmann U, Burbage M, Zueva E, et al. Critical role for TRIM28 and HP1beta/gamma in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proc Natl Acad Sci USA. 2019; 116(51): 25839-25849.

[276]

Chikuma S, Yamanaka S, Nakagawa S, et al. TRIM28 expression on dendritic cells prevents excessive T cell priming by silencing endogenous retrovirus. J Immunol. 2021; 206(7): 1528-1539.

[277]

Liang M, Sun Z, Chen X, et al. E3 ligase TRIM28 promotes anti-PD-1 resistance in non-small cell lung cancer by enhancing the recruitment of myeloid-derived suppressor cells. J Exp Clin Cancer Res. 2023; 42(1): 275.

[278]

Kimura T, Jain A, Choi SW, Mandell MA, Johansen T, Deretic V. TRIM-directed selective autophagy regulates immune activation. Autophagy. 2017; 13(5): 989-990.

[279]

Chauhan S, Kumar S, Jain A, et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell. 2016; 39(1): 13-27.

[280]

Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol. 2011; 12(12): 1143-1149.

[281]

Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015; 16(6): 329-344.

[282]

Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012; 150(2): 339-350.

[283]

Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014; 54(1): 133-146.

[284]

Dondelinger Y, Declercq W, Montessuit S, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014; 7(4): 971-981.

[285]

Davies KA, Tanzer MC, Griffin MDW, et al. The brace helices of MLKL mediate interdomain communication and oligomerisation to regulate cell death by necroptosis. Cell Death Differ. 2018; 25(9): 1567-1580.

[286]

Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat. 2021; 57: 100770.

[287]

Wu GJ, Pen J, Huang Y, et al. KAP1 inhibits the Raf-MEK-ERK pathway to promote tumorigenesis in A549 lung cancer cells. Mol Carcinog. 2018; 57(10): 1396-1407.

[288]

Zhang J, Fan X, Liao L, et al. TRIM28 attenuates Bortezomib sensitivity of hepatocellular carcinoma cells through enhanced proteasome expression. Clin Transl Med. 2022; 12(1): e603.

[289]

Wang H, Tang M, Pei E, Shen Y, Wang A, Lin M. Blocking the E2F transcription factor 1/high-mobility group box 2 pathway enhances the intervention effects of alpha-santalol on the malignant behaviors of liver cancer cells. Int J Biochem Cell Biol. 2024; 168: 106516.

[290]

Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009; 9(12): 862-873.

[291]

Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020; 52(2): 192-203.

[292]

Shen LT, Chou HE, Kato M. TIF1beta is phosphorylated at serine 473 in colorectal tumor cells through p38 mitogen-activated protein kinase as an oxidative defense mechanism. Biochem Biophys Res Commun. 2017; 492(3): 310-315.

[293]

Jovcevska I, Muyldermans S. The Therapeutic Potential of Nanobodies. Biodrugs. 2020; 34(1): 11-26.

[294]

Porcnik A, Novak M, Breznik B, et al. TRIM28 selective nanobody reduces glioblastoma stem cell invasion. Molecules. 2021; 26(17): 5141.

[295]

Zhang XH, Zhao HY, Wang Y, et al. Zenglv Fumai Granule protects cardiomyocytes against hypoxia/reoxygenation-induced apoptosis via inhibiting TRIM28 expression. Mol Med Rep. 2021; 23(3): 171.

[296]

Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 family in cancers: role, mechanism, and therapeutic potential. Cancers (Basel). 2023; 15(19): 4723.

[297]

Liang J, Wang L, Wang C, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res. 2020; 8(7): 952-965.

[298]

Damineni S, Balaji SA, Shettar A, et al. Expression of tripartite motif-containing protein 28 in primary breast carcinoma predicts metastasis and is involved in the stemness, chemoresistance, and tumor growth. Tumour Biol. 2017; 39(4): 1010428317695919.

[299]

Tan Q, Ma J, Zhang H, et al. miR-125b-5p upregulation by TRIM28 induces cisplatin resistance in non-small cell lung cancer through CREB1 inhibition. BMC Pulm Med. 2022; 22(1): 469.

[300]

Liu L, Xiao L, Liang X, et al. TRIM28 knockdown increases sensitivity to etoposide by upregulating E2F1 in non-small cell lung cancer. Oncol Rep. 2017; 37(6): 3597-3605.

[301]

Wang R, Fu Y, Yao M, et al. The HN1/HMGB1 axis promotes the proliferation and metastasis of hepatocellular carcinoma and attenuates the chemosensitivity to oxaliplatin. FEBS J. 2022; 289(20): 6400-6419.

[302]

Wang B, Fan P, Zhao J, Wu H, Jin X, Wu H. FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 2018; 37(1): 224.

[303]

Golding SE, Rosenberg E, Adams BR, et al. Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle. 2012; 11(6): 1167-1173.

[304]

Chohan H, Esfandiarei M, Arman D, et al. Neurofibromin haploinsufficiency results in altered spermatogenesis in a mouse model of neurofibromatosis type 1. PLoS One. 2018; 13(12): e0208835.

[305]

Dang VT, Kassahn KS, Marcos AE, Ragan MA. Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. Eur J Hum Genet. 2008; 16(11): 1350-1357.

[306]

Kurotaki N, Imaizumi K, Harada N, et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet. 2002; 30(4): 365-366.

[307]

Meechan DW, Maynard TM, Gopalakrishna D, Wu Y, LaMantia AS. When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. Gene Expr. 2007; 13(6): 299-310.

[308]

Deutschbauer AM, Jaramillo DF, Proctor M, et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics. 2005; 169(4): 1915-1925.

[309]

Miro X, Zhou X, Boretius S, et al. Haploinsufficiency of the murine polycomb gene Suz12 results in diverse malformations of the brain and neural tube. Dis Model Mech. 2009; 2(7-8): 412-418.

[310]

Seah MKY, Messerschmidt DM. From germline to soma: epigenetic dynamics in the mouse preimplantation embryo. Curr Top Dev Biol. 2018; 128: 203-235.

[311]

White DE, Negorev D, Peng H, Ivanov AV, Maul GG, Rauscher FJ 3rd. KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res. 2006; 66(24): 11594-11599.

[312]

Lorthongpanich C, Cheow LF, Balu S, et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science. 2013; 341(6150): 1110-1112.

[313]

Dalgaard K, Landgraf K, Heyne S, et al. Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell. 2016; 164(3): 353-364.

[314]

Weber P, Cammas F, Gerard C, et al. Germ cell expression of the transcriptional co-repressor TIF1beta is required for the maintenance of spermatogenesis in the mouse. Development. 2002; 129(10): 2329-2337.

[315]

Tan JHL, Wollmann H, van Pelt AMM, Kaldis P, Messerschmidt DM. Infertility-causing haploinsufficiency reveals TRIM28/KAP1 requirement in spermatogonia. Stem Cell Reports. 2020; 14(5): 818-827.

[316]

Zhou C, Li D, He J, et al. TRIM28-mediated excessive oxidative stress induces cellular senescence in granulosa cells and contributes to premature ovarian insufficiency in vitro and in vivo. Antioxidants (Basel). 2024; 13(3): 308.

[317]

Rousseaux MW, Revelli JP, Vazquez-Velez GE, et al. Depleting Trim28 in adult mice is well tolerated and reduces levels of alpha-synuclein and tau. Elife. 2018; 7: e36768.

[318]

King EJ, Bond ST, Yang C, et al. Loss of Trim28 in muscle alters mitochondrial signalling but not systemic metabolism. J Endocrinol. 2023; 259(2):e230210

[319]

Bond ST, King EJ, Henstridge DC, et al. Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nat Commun. 2021; 12(1): 74.

[320]

Fu J, Zhou B, Zhang L, et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 2020; 47(6): 4383-4392.

[321]

Wang Y, Fan Y, Huang Y, et al. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. Cell Signal. 2021; 85: 110064.

[322]

Schmidt N, Domingues P, Golebiowski F, et al. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proc Natl Acad Sci USA. 2019; 116(35): 17399-17408.

[323]

Ma X, Yang T, Luo Y, et al. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. Elife. 2019; 8: e42426.

[324]

Warowicka A, Broniarczyk J, Weglewska M, Kwasniewski W, Gozdzicka-Jozefiak A. Dual role of YY1 in HPV life cycle and cervical cancer development. Int J Mol Sci. 2022; 23(7): 3453.

[325]

Yang Y, Tan S, Han Y, et al. The role of tripartite motif-containing 28 in cancer progression and its therapeutic potentials. Front Oncol. 2023; 13: 1100134.

[326]

Liu C, Zhao K, Chen Y, et al. Mitochondrial glycerol-3-phosphate dehydrogenase restricts HBV replication via the TRIM28-mediated degradation of HBx. J Virol. 2023; 97(5): e0058023.

[327]

Tovo PA, Garazzino S, Dapra V, et al. Chronic HCV infection is associated with overexpression of human endogenous retroviruses that persists after drug-induced viral clearance. Int J Mol Sci. 2020; 21(11): 3980.

[328]

Randolph K, Hyder U, D’Orso I. KAP1/TRIM28: transcriptional activator and/or repressor of viral and cellular programs? Front Cell Infect Microbiol. 2022; 12: 834636.

[329]

Ge J, Wang J, Xiong F, et al. Epstein-Barr virus-encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 2021; 81(19): 5074-5088.

[330]

Cesarman E, Chadburn A, Rubinstein PG. KSHV/HHV8-mediated hematologic diseases. Blood. 2022; 139(7): 1013-1025.

[331]

Bentz GL, Moss CR 2nd, Whitehurst CB, Moody CA, Pagano JS. LMP1-induced sumoylation influences the maintenance of Epstein-Barr virus latency through KAP1. J Virol. 2015; 89(15): 7465-7477.

[332]

Xu H, Li X, Rousseau BA, et al. IFI16 partners with KAP1 to maintain Epstein-Barr virus latency. J Virol. 2022; 96(17): e0102822.

[333]

Li X, Kozlov SV, El-Guindy A, Bhaduri-McIntosh S. Retrograde regulation by the viral protein kinase epigenetically sustains the Epstein-Barr virus latency-to-lytic switch to augment virus production. J Virol. 2019; 93(17): e00572-19.

[334]

Yang BX, El Farran CA, Guo HC, et al. Systematic identification of factors for provirus silencing in embryonic stem cells. Cell. 2015; 163(1): 230-245.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

226

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/