Immunometabolism: signaling pathways, homeostasis, and therapeutic targets

Rongrong Xu , Xiaobo He , Jia Xu , Ganjun Yu , Yanfeng Wu

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e789

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e789 DOI: 10.1002/mco2.789
REVIEW

Immunometabolism: signaling pathways, homeostasis, and therapeutic targets

Author information +
History +
PDF

Abstract

Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells’ differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes’ role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.

Keywords

immunometabolism / immune cells / immunometabolic enzymes / homeostasis / checkpoint

Cite this article

Download citation ▾
Rongrong Xu, Xiaobo He, Jia Xu, Ganjun Yu, Yanfeng Wu. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm, 2024, 5(11): e789 DOI:10.1002/mco2.789

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. 2021; 21(8): 526-541.

[2]

Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol. 2011; 11(9): 625-632.

[3]

Mogilenko DA, Sergushichev A, Artyomov MN. Systems immunology approaches to metabolism. Annu Rev Immunol. 2023; 41: 317-342.

[4]

Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017; 38(6): 395-406.

[5]

Qu M, Zhang H, Cheng P, et al. Histone deacetylase 6’s function in viral infection, innate immunity, and disease: latest advances. Front Immunol. 2023; 14: 1216548.

[6]

Jung J, Zeng H, Horng T. Metabolism as a guiding force for immunity. Nat Cell Biol. 2019; 21(1): 85-93.

[7]

Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic mechanisms to translation. Immunol Rev. 2020; 295(1): 5-14.

[8]

Zebley CC, Zehn D, Gottschalk S, Chi H. T cell dysfunction and therapeutic intervention in cancer. Nat Immunol. 2024; 25(8): 1344-1354.

[9]

Guo C, You Z, Shi H, et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature. 2023; 620(7972): 200-208.

[10]

Jin HR, Wang J, Wang ZJ, et al. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023; 16(1): 103.

[11]

Qu D, Shen L, Liu S, et al. Chronic inflammation confers to the metabolic reprogramming associated with tumorigenesis of colorectal cancer. Cancer Biol Ther. 2017; 18(4): 237-244.

[12]

Bose S, Le A. Glucose metabolism in cancer. Adv Exp Med Biol. 2018; 1063: 3-12.

[13]

Zou Q, Jin J, Xiao Y, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015; 212(8): 1323-1336.

[14]

Balyan R, Gautam N, Gascoigne NRJ. The ups and downs of metabolism during the lifespan of a T cell. Int J Mol Sci. 2020; 21(21): 7972

[15]

Zhang M, Lin X, Yang Z, et al. Metabolic regulation of T cell development. Front Immunol. 2022; 13: 946119.

[16]

Werlen G, Jain R, Jacinto E. MTOR signaling and metabolism in early T cell development. Genes (Basel). 2021; 12(5): 728

[17]

Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015; 25(9): 545-55.

[18]

Daley SR, Teh C, Hu DY, Strasser A, Gray DHD. Cell death and thymic tolerance. Immunol Rev. 2017; 277(1): 9-20.

[19]

Miller JF. The golden anniversary of the thymus. Nat Rev Immunol. 2011; 11(7): 489-495.

[20]

Brown AJ, White J, Shaw L, et al. MHC heterozygosity limits T cell receptor variability in CD4 T cells. Sci Immunol. 2024; 9(97): eado5295.

[21]

Amsen D, Kruisbeek AM. CD28-B7 interactions function to co-stimulate clonal deletion of double-positive thymocytes. Int Immunol. 1996; 8(12): 1927-1936.

[22]

Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation: a review. Crit Rev Immunol. 1998; 18(5): 389-418.

[23]

Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol. 2008; 180(7): 4476-4486.

[24]

Yu Q, Tu H, Yin X, et al. Targeting glutamine metabolism ameliorates autoimmune hepatitis via inhibiting T cell activation and differentiation. Front Immunol. 2022; 13: 880262.

[25]

Carr EL, Kelman A, Wu GS, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010; 185(2): 1037-1044.

[26]

Oh H, Ghosh S. NF-κB: roles and regulation in different CD4(+) T-cell subsets. Immunol Rev. 2013; 252(1): 41-51.

[27]

Zygmunt BM, Węgrzyn A, Gajska W, Yevsa T, Chodaczek G, Guzmán CA. Mannose metabolism is essential for Th1 cell differentiation and IFN-γ production. J Immunol. 2018; 201(5): 1400-1411.

[28]

Bailis W, Shyer JA, Zhao J, et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature. 2019; 571(7765): 403-407.

[29]

Lamiable O, Mayer JU, Munoz-Erazo L, Ronchese F. Dendritic cells in Th2 immune responses and allergic sensitization. Immunol Cell Biol. 2020; 98(10): 807-818.

[30]

Stark JM, Tibbitt CA, Coquet JM. The metabolic requirements of Th2 cell differentiation. Front Immunol. 2019; 10: 2318.

[31]

Zúñiga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013; 252(1): 78-88.

[32]

Kanno T, Miyako K, Endo Y. Lipid metabolism: a central modulator of RORγt-mediated Th17 cell differentiation. Int Immunol. 2024; 36(10): 487-496.

[33]

Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol. 2024; 21(5): 419-435.

[34]

Kanno T, Nakajima T, Miyako K, Endo Y. Lipid metabolism in Th17 cell function. Pharmacol Ther. 2023; 245: 108411.

[35]

Richards DM, Delacher M, Goldfarb Y, et al. Treg cell differentiation: from thymus to peripheral tissue. Prog Mol Biol Transl Sci. 2015; 136: 175-205.

[36]

Johnson MO, Wolf MM, Madden MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. 2018; 175(7): 1780-1795.e19.

[37]

Badr ME, Zhang Z, Tai X, Singer A. CD8 T cell tolerance results from eviction of immature autoreactive cells from the thymus. Science. 2023; 382(6670): 534-541.

[38]

Wei X, Xin J, Chen W, et al. Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomed Pharmacother. 2023; 163: 114862.

[39]

Macri C, Pang ES, Patton T, O’Keeffe M. Dendritic cell subsets. Semin Cell Dev Biol. 2018; 84: 11-21.

[40]

Shanmugam G, Das S, Paul S, Rakshit S, Sarkar K. Clinical relevance and therapeutic aspects of professional antigen-presenting cells in lung cancer. Med Oncol. 2022; 39(12): 237.

[41]

Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol. 2019; 348: 1-68.

[42]

Lutz MB, Ali S, Audiger C, et al. Guidelines for mouse and human DC generation. Eur J Immunol. 2023; 53(11): e2249816.

[43]

Bystrom R, Levis MJ. An update on FLT3 in acute myeloid leukemia: pathophysiology and therapeutic landscape. Curr Oncol Rep. 2023; 25(4): 369-378.

[44]

Cueto FJ, Sancho D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers (Basel). 2021; 13(7): 1525

[45]

Tu HF, Kung YJ, Lim L, et al. FLT3L-induced virtual memory CD8 T cells engage the immune system against tumors. J Biomed Sci. 2024; 31(1): 19.

[46]

Lellahi SM, Azeem W, Hua Y, et al. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol. 2022; 13: 1058963.

[47]

Kratchmarov R, Viragova S, Kim MJ, et al. Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol Cell Biol. 2018; 96(8): 863-871.

[48]

Rahman S, Khan ZK, Wigdahl B, Jennings SR, Tangy F, Jain P. Murine FLT3 ligand-derived dendritic cell-mediated early immune responses are critical to controlling cell-free human T cell leukemia virus type 1 infection. J Immunol. 2011; 186(1): 390-402.

[49]

Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol. 2007; 179(11): 7577-7584.

[50]

van de Laar L, Coffer PJ, Woltman AM. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood. 2012; 119(15): 3383-3393.

[51]

Zhan Y, Carrington EM, van Nieuwenhuijze A, et al. GM-CSF increases cross-presentation and CD103 expression by mouse CD8+ spleen dendritic cells. Eur J Immunol. 2011; 41(9): 2585-2595.

[52]

Vremec D, Hansen J, Strasser A, et al. Maintaining dendritic cell viability in culture. Mol Immunol. 2015; 63(2): 264-267.

[53]

Guo C, Chi H. Immunometabolism of dendritic cells in health and disease. Adv Immunol. 2023; 160: 83-116.

[54]

Grzes KM, Sanin DE, Kabat AM, et al. Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity. 2021; 54(11): 2514-2530.e7.

[55]

Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019; 21(1): 63-71.

[56]

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008; 8(12): 958-969.

[57]

Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol. 2012; 189(7): 3439-3448.

[58]

Zhang H, Cao N, Yang Z, et al. Bilobalide alleviated dextran sulfate sodium-induced experimental colitis by inhibiting M1 macrophage polarization through the NF-κB signaling pathway. Front Pharmacol. 2020; 11: 718.

[59]

Van den Bossche J, Saraber DL. Metabolic regulation of macrophages in tissues. Cell Immunol. 2018; 330: 54-59.

[60]

Partida-Zavala N, Ponce-Gallegos MA, Buendía-Roldán I, Falfán-Valencia R. Type 2 macrophages and Th2 CD4+ cells in interstitial lung diseases (ILDs): an overview. Sarcoidosis Vasc Diffuse Lung Dis. 2018; 35(2): 98-108.

[61]

Batista-Gonzalez A, Vidal R, Criollo A, Carreño LJ. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol. 2019; 10: 2993.

[62]

Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 2019; 5(12): 822-834.

[63]

O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat Rev Immunol. 2019; 19(5): 282-290.

[64]

Wang X, Zhao XY. Transcription factors associated with IL-15 cytokine signaling during NK cell development. Front Immunol. 2021; 12: 610789.

[65]

Gasteiger G, Hemmers S, Firth MA, et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med. 2013; 210(6): 1167-1178.

[66]

Terrén I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O, Borrego F. Cytokine-induced memory-like NK cells: from the basics to clinical applications. Front Immunol. 2022; 13: 884648.

[67]

Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 2012; 249(1): 43-58.

[68]

Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016; 17(3): 277-285.

[69]

Wang Y, Zhang H. Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 2019; 1206: 67-83.

[70]

Feng Y, Chen Y, Wu X, et al. Interplay of energy metabolism and autophagy. Autophagy. 2024; 20(1): 4-14.

[71]

Eid W, Dauner K, Courtney KC, et al. mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci USA. 2017; 114(30): 7999-8004.

[72]

Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med (Berl). 2021; 99(8): 1139-1150.

[73]

Heintzman DR, Fisher EL, Rathmell JC. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol Immunol. 2022; 19(3): 316-326.

[74]

Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol. 2020; 20(1): 55-70.

[75]

Kao KC, Vilbois S, Tsai CH, Ho PC. Metabolic communication in the tumour-immune microenvironment. Nat Cell Biol. 2022; 24(11): 1574-1583.

[76]

Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017; 32(3): 377-391.e9.

[77]

Chen W, Xin J, Wei X, et al. Integrated transcriptomic and metabolomic profiles reveal the protective mechanism of modified Danggui Buxue decoction on radiation-induced leukopenia in mice. Front Pharmacol. 2023; 14: 1178724.

[78]

Elia I, Rowe JH, Johnson S, et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8(+) T cells. Cell Metab. 2022; 34(8): 1137-1150.e6.

[79]

Wu J, Li G, Li L, Li D, Dong Z, Jiang P. Asparagine enhances LCK signalling to potentiate CD8(+) T-cell activation and anti-tumour responses. Nat Cell Biol. 2021; 23(1): 75-86.

[80]

You Z, Chi H. Lipid metabolism in dendritic cell biology. Immunol Rev. 2023; 317(1): 137-151.

[81]

Rehman A, Hemmert KC, Ochi A, et al. Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol. 2013; 190(9): 4640-4649.

[82]

Piedra-Quintero ZL, Wilson Z, Nava P, Guerau-de-Arellano M. CD38: an immunomodulatory molecule in inflammation and autoimmunity. Front Immunol. 2020; 11: 597959.

[83]

Chini CCS, Peclat TR, Warner GM, et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels. Nat Metab. 2020; 2(11): 1284-1304.

[84]

Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008; 88(3): 841-886.

[85]

Ghosh A, Khanam A, Ray K, et al. CD38: an ecto-enzyme with functional diversity in T cells. Front Immunol. 2023; 14: 1146791.

[86]

Musso T, Deaglio S, Franco L, et al. CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines. J Leukoc Biol. 2001; 69(4): 605-612.

[87]

Chen L, Diao L, Yang Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 2018; 8(9): 1156-1175.

[88]

Roboon J, Hattori T, Ishii H, et al. Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD(). J Neurochem. 2021; 158(2): 311-327.

[89]

Guedes AG, Dileepan M, Jude JA, Deshpande DA, Walseth TF, Kannan MS. Role of CD38/cADPR signaling in obstructive pulmonary diseases. Curr Opin Pharmacol. 2020; 51: 29-33.

[90]

Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995; 270(51): 30327-30333.

[91]

Kim UH. Roles of cADPR and NAADP in pancreatic beta cell signaling. Cell Calcium. 2022; 103: 102562.

[92]

Guse AH. 25 Years of collaboration with a genius: deciphering adenine nucleotide Ca(2+) mobilizing second messengers together with professor Barry Potter. Molecules. 2020; 25(18): 4220

[93]

Lee HC, Deng QW, Zhao YJ. The calcium signaling enzyme CD38 - a paradigm for membrane topology defining distinct protein functions. Cell Calcium. 2022; 101: 102514.

[94]

Perraud AL, Fleig A, Dunn CA, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001; 411(6837): 595-599.

[95]

Liu Q, Kriksunov IA, Graeff R, Lee HC, Hao Q. Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38. J Biol Chem. 2007; 282(8): 5853-5861.

[96]

Reinis M, Morra M, Funaro A, Di Primio R, Malavasi F. Functional associations of CD38 with CD3 on the T-cell membrane. J Biol Regul Homeost Agents. 1997; 11(4): 137-142.

[97]

Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015; 373(13): 1207-1219.

[98]

Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood. 2011; 118(13): 3470-3478.

[99]

Matrai Z. CD38 as a prognostic marker in CLL. Hematology. 2005; 10(1): 39-46.

[100]

Tembhare PR, Sriram H, Khanka T, et al. Flow cytometric evaluation of CD38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-CD38 immunotherapy. J Immunother Cancer. 2020; 8(1):e000630

[101]

García-Sanz R, Jiménez C, Puig N, et al. Origin of Waldenstrom’s macroglobulinaemia. Best Pract Res Clin Haematol. 2016; 29(2): 136-147.

[102]

Mihara K, Yanagihara K, Takigahira M, et al. Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-Hodgkin lymphoma. J Immunother. 2009; 32(7): 737-743.

[103]

Tenca C, Merlo A, Zarcone D, et al. Death of T cell precursors in the human thymus: a role for CD38. Int Immunol. 2003; 15(9): 1105-1116.

[104]

Mathur P, Kottilil S, Pallikkuth S, Frasca D, Ghosh A. Persistent CD38 expression on CD8 + T lymphocytes contributes to altered mitochondrial function and chronic inflammation in people with HIV, despite ART. J Acquir Immune Defic Syndr. 2022; 91(4): 410-418.

[105]

Wu P, Zhao L, Chen Y, et al. CD38 identifies pre-activated CD8+ T cells which can be reinvigorated by anti-PD-1 blockade in human lung cancer. Cancer Immunol Immunother. 2021; 70(12): 3603-3616.

[106]

Lu L, Wang J, Yang Q, Xie X, Huang Y. The role of CD38 in HIV infection. AIDS Res Ther. 2021; 18(1): 11.

[107]

Cao W, Qiu ZF, Li TS. Parallel decline of CD8+CD38+ lymphocytes and viremia in treated hepatitis B patients. World J Gastroenterol. 2011; 17(17): 2191-2198.

[108]

Rodríguez-Alba JC, Abrego-Peredo A, Gallardo-Hernández C, et al. HIV disease progression: overexpression of the ectoenzyme CD38 as a contributory factor? Bioessays. 2019; 41(1): e1800128.

[109]

Zhang Y, Li W, Ma K, et al. Elevated CD38 expression characterizes impaired CD8(+) T cell immune response in metastatic pleural effusions. Immunol Lett. 2022; 245: 61-68.

[110]

Guo C, Crespo M, Gurel B, et al. CD38 in advanced prostate cancers. Eur Urol. 2021; 79(6): 736-746.

[111]

Horenstein AL, Chillemi A, Zaccarello G, et al. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology. 2013; 2(9): e26246.

[112]

Bahri R, Bollinger A, Bollinger T, Orinska Z, Bulfone-Paus S. Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-γ-mediated suppressor activities. PLoS One. 2012; 7(9): e45234.

[113]

Lancellotti S, Novarese L, De Cristofaro R. Biochemical properties of indoleamine 2, 3-dioxygenase: from structure to optimized design of inhibitors. Curr Med Chem. 2011; 18(15): 2205-2214.

[114]

Pantouris G, Serys M, Yuasa HJ, Ball HJ, Mowat CG. Human indoleamine 2, 3-dioxygenase-2 has substrate specificity and inhibition characteristics distinct from those of indoleamine 2, 3-dioxygenase-1. Amino Acids. 2014; 46(9): 2155-2163.

[115]

Meng B, Wu D, Gu J, Ouyang S, Ding W, Liu ZJ. Structural and functional analyses of human tryptophan 2, 3-dioxygenase. Proteins. 2014; 82(11): 3210-3216.

[116]

Song X, Si Q, Qi R, et al. Indoleamine 2, 3-dioxygenase 1: a promising therapeutic target in malignant tumor. Front Immunol. 2021; 12: 800630.

[117]

Van der Leek AP, Yanishevsky Y, Kozyrskyj AL. The kynurenine pathway as a novel link between allergy and the gut microbiome. Front Immunol. 2017; 8: 1374.

[118]

Ye Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer. 2019; 10(12): 2771-2782.

[119]

Hwang SL, Chung NP, Chan JK, Lin CL. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res. 2005; 15(3): 167-175.

[120]

Lee JH, Torisu-Itakara H, Cochran AJ, et al. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res. 2005; 11(1): 107-112.

[121]

Guo L, Zaharie SD, Marceline van Furth A, et al. Marked IDO2 expression and activity related to autophagy and apoptosis in brain tissue of fatal tuberculous meningitis. Tuberculosis (Edinb). 2024; 146: 102495.

[122]

Stone TW, Williams RO. Tryptophan metabolism as a ‘reflex’ feature of neuroimmune communication: sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem. 2024; 168(9): 3333-3357.

[123]

Capece L, Lewis-Ballester A, Yeh SR, Estrin DA, Marti MA. Complete reaction mechanism of indoleamine 2, 3-dioxygenase as revealed by QM/MM simulations. J Phys Chem B. 2012; 116(4): 1401-1413.

[124]

Weber WP, Feder-Mengus C, Chiarugi A, et al. Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur J Immunol. 2006; 36(2): 296-304.

[125]

Opitz CA, Somarribas Patterson LF, Mohapatra SR, et al. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer. 2020; 122(1): 30-44.

[126]

Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci. 2022; 9: 897929.

[127]

Yoshida Y, Fujigaki H, Kato K, et al. Selective and competitive inhibition of kynurenine aminotransferase 2 by glycyrrhizic acid and its analogues. Sci Rep. 2019; 9(1): 10243.

[128]

Li C, Sun Z, Yuan F, et al. Mechanism of indoleamine 2, 3-dioxygenase inhibiting cardiac allograft rejection in mice. J Cell Mol Med. 2020; 24(6): 3438-3448.

[129]

Eleftheriadis T, Pissas G, Karioti A, et al. The indoleamine 2, 3-dioxygenase inhibitor 1-methyl-tryptophan suppresses mitochondrial function, induces aerobic glycolysis and decreases interleukin-10 production in human lymphocytes. Immunol Invest. 2012; 41(5): 507-520.

[130]

Brincks EL, Adams J, Wang L, et al. Indoximod opposes the immunosuppressive effects mediated by IDO and TDO via modulation of AhR function and activation of mTORC1. Oncotarget. 2020; 11(25): 2438-2461.

[131]

Sonner JK, Deumelandt K, Ott M, et al. The stress kinase GCN2 does not mediate suppression of antitumor T cell responses by tryptophan catabolism in experimental melanomas. Oncoimmunology. 2016; 5(12): e1240858.

[132]

Metz R, Rust S, Duhadaway JB, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012; 1(9): 1460-1468.

[133]

Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999; 189(9): 1363-1372.

[134]

Gomes B, Driessens G, Bartlett D, et al. Characterization of the selective indoleamine 2, 3-dioxygenase-1 (IDO1) catalytic inhibitor EOS200271/PF-06840003 supports IDO1 as a critical resistance mechanism to PD-(L)1 blockade therapy. Mol Cancer Ther. 2018; 17(12): 2530-2542.

[135]

Schafer CC, Wang Y, Hough KP, et al. Indoleamine 2, 3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget. 2016; 7(46): 75407-75424.

[136]

Bourque J, Hawiger D. Immunomodulatory bonds of the partnership between dendritic cells and T cells. Crit Rev Immunol. 2018; 38(5): 379-401.

[137]

Amobi-McCloud A, Muthuswamy R, Battaglia S, et al. IDO1 expression in ovarian cancer induces PD-1 in T cells via aryl hydrocarbon receptor activation. Front Immunol. 2021; 12: 678999.

[138]

Solvay M, Holfelder P, Klaessens S, et al. Tryptophan depletion sensitizes the AHR pathway by increasing AHR expression and GCN2/LAT1-mediated kynurenine uptake, and potentiates induction of regulatory T lymphocytes. J Immunother Cancer. 2023; 11(6):e006728

[139]

Fujiwara Y, Kato S, Nesline MK, et al. Indoleamine 2, 3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev. 2022; 110: 102461.

[140]

Vogel CF, Wu D, Goth SR, et al. Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation. Immunol Cell Biol. 2013; 91(9): 568-575.

[141]

Coyle KM, Hawke LG, Ormiston ML. Addressing natural killer cell dysfunction and plasticity in cell-based cancer therapeutics. Cancers (Basel). 2023; 15(6): 1743

[142]

Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2, 3-dioxygenase. Biochem Biophys Res Commun. 2008; 375(3): 331-335.

[143]

Qian F, Liao J, Villella J, et al. Effects of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and IDO2-mediated arrest of human T cell proliferation. Cancer Immunol Immunother. 2012; 61(11): 2013-2020.

[144]

Gu P, Ling B, Ma W, et al. Indoleamine 2, 3-dioxygenase 2 immunohistochemical expression in medullary thyroid carcinoma: implications in prognosis and immunomodulatory effects. BMC Cancer. 2022; 22(1): 1116.

[145]

Yamamoto Y, Yamasuge W, Imai S, et al. Lipopolysaccharide shock reveals the immune function of indoleamine 2, 3-dioxygenase 2 through the regulation of IL-6/stat3 signalling. Sci Rep. 2018; 8(1): 15917.

[146]

Terai M, Londin E, Rochani A, et al. Expression of tryptophan 2, 3-dioxygenase in metastatic uveal melanoma. Cancers (Basel). 2020; 12(2): 405

[147]

Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech. 2023; 13(5): 159.

[148]

Caldwell RB, Toque HA, Narayanan SP, Caldwell RW. Arginase: an old enzyme with new tricks. Trends Pharmacol Sci. 2015; 36(6): 395-405.

[149]

Grohmann U, Mondanelli G, Belladonna ML, et al. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017; 35: 37-45.

[150]

Proietti E, Rossini S, Grohmann U, Mondanelli G. Polyamines and kynurenines at the intersection of immune modulation. Trends Immunol. 2020; 41(11): 1037-1050.

[151]

Glöckner HJ, Martinenaite E, Landkildehus Lisle T, et al. Arginase-1 specific CD8+ T cells react toward malignant and regulatory myeloid cells. Oncoimmunology. 2024; 13(1): 2318053.

[152]

Rodríguez-López JM, Iglesias-González JL, Lozano-Sánchez FS, Palomero-Rodríguez M, Sánchez-Conde P. Inflammatory response, immunosuppression and arginase activity after cardiac surgery using cardiopulmonary bypass. J Clin Med. 2022; 11(14): 4187

[153]

Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005; 5(8): 641-654.

[154]

Ma Z, Zhen Y, Hu C, Yi H. Myeloid-derived suppressor cell-derived arginase-1 oppositely modulates IL-17A and IL-17F through the ESR/STAT3 pathway during colitis in mice. Front Immunol. 2020; 11: 687.

[155]

Goh CC, Roggerson KM, Lee HC, Golden-Mason L, Rosen HR, Hahn YS. Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK cell IFN-γ production by altering cellular metabolism via arginase-1. J Immunol. 2016; 196(5): 2283-2292.

[156]

Martí i Líndez AA, Dunand-Sauthier I, Conti M, et al. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight. 2019; 4(24):e132975

[157]

Bergerud KMB, Berkseth M, Pardoll DM, et al. Radiation therapy and myeloid-derived suppressor cells: breaking down their cancerous partnership. Int J Radiat Oncol Biol Phys. 2023;119(1):42-55

[158]

Li X, Wenes M, Romero P, Huang SC, Fendt SM, Ho PC. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019; 16(7): 425-441.

[159]

Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells. Adv Exp Med Biol. 2007; 601: 213-23.

[160]

Wang XX, Wan RZ, Liu ZP. Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur J Med Chem. 2018; 143: 1406-1418.

[161]

Beljkas M, Ilic A, Cebzan A, et al. Targeting histone deacetylases 6 in dual-target therapy of cancer. Pharmaceutics. 2023; 15(11): 2581

[162]

Kumar S, Attrish D, Srivastava A, et al. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin Ther Targets. 2021; 25(1): 75-85.

[163]

Mahale A, Routholla G, Lavanya S, Sharma P, Ghosh B, Kulkarni OP. Pharmacological blockade of HDAC6 attenuates cancer progression by inhibiting IL-1β and modulating immunosuppressive response in OSCC. Int Immunopharmacol. 2024; 132: 111921.

[164]

Lee JH, Kim HS, Jang SW, Lee GR. Histone deacetylase 6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation. Sci Rep. 2022; 12(1): 22550.

[165]

Qiu W, Wang B, Gao Y, et al. Targeting histone deacetylase 6 reprograms interleukin-17-producing helper T cell pathogenicity and facilitates immunotherapies for hepatocellular carcinoma. Hepatology. 2020; 71(6): 1967-1987.

[166]

Molinier-Frenkel V, Prévost-Blondel A, Castellano F. The IL4I1 enzyme: a new player in the immunosuppressive tumor microenvironment. Cells. 2019; 8(7): 757

[167]

Boulland ML, Marquet J, Molinier-Frenkel V, et al. Human IL4I1 is a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood. 2007; 110(1): 220-227.

[168]

Zeitler L, Fiore A, Meyer C, et al. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Elife. 2021; 10: e64806

[169]

Sadik A, Somarribas Patterson LF, Öztürk S, et al. IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 2020; 182(5): 1252-1270.e34.

[170]

Puiffe ML, Dupont A, Sako N, et al. IL4I1 accelerates the expansion of effector CD8(+) T cells at the expense of memory precursors by increasing the threshold of T-cell activation. Front Immunol. 2020; 11: 600012.

[171]

Aubatin A, Sako N, Decrouy X, Donnadieu E, Molinier-Frenkel V, Castellano F. IL4-induced gene 1 is secreted at the immune synapse and modulates TCR activation independently of its enzymatic activity. Eur J Immunol. 2018; 48(1): 106-119.

[172]

Zhu J, Li Y, Lv X. IL4I1 enhances PD-L1 expression through JAK/STAT signaling pathway in lung adenocarcinoma. Immunogenetics. 2023; 75(1): 17-25.

[173]

Zhu L, Wang J, Hu J. High expression of IL4I1 is correlated with poor prognosis and immune infiltration in thyroid cancer. BMC Endocr Disord. 2023; 23(1): 148.

[174]

Wobser M, Voigt H, Houben R, et al. Dendritic cell based antitumor vaccination: impact of functional indoleamine 2, 3-dioxygenase expression. Cancer Immunol Immunother. 2007; 56(7): 1017-1024.

[175]

Zakharia Y, McWilliams RR, Rixe O, et al. Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. J Immunother Cancer. 2021; 9(6):e002057

[176]

Mangaonkar AA, Patnaik MM. Role of the bone marrow immune microenvironment in chronic myelomonocytic leukemia pathogenesis: novel mechanisms and insights into clonal propagation. Leuk Lymphoma. 2022; 63(8): 1792-1800.

[177]

Wang F, Liu L, Wang J, et al. Gain-of-function of IDO in DCs inhibits T cell immunity by metabolically regulating surface molecules and cytokines. Exp Ther Med. 2023; 25(5): 234.

[178]

Sharma MD, Hou DY, Liu Y, et al. Indoleamine 2, 3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood. 2009; 113(24): 6102-11.

[179]

Xie FT, Cao JS, Zhao J, Yu Y, Qi F, Dai XC. IDO expressing dendritic cells suppress allograft rejection of small bowel transplantation in mice by expansion of Foxp3+ regulatory T cells. Transpl Immunol. 2015; 33(2): 69-77.

[180]

Wang F, Liu M, Ma D, et al. Dendritic cell-expressed IDO alleviates atherosclerosis by expanding CD4(+)CD25(+)Foxp3(+)Tregs through IDO-Kyn-AHR axis. Int Immunopharmacol. 2023; 116: 109758.

[181]

Chu CL, Lee YP, Pang CY, Lin HR, Chen CS, You RI. Tyrosine kinase inhibitors modulate dendritic cell activity via confining c-Kit signaling and tryptophan metabolism. Int Immunopharmacol. 2020; 82: 106357.

[182]

Park MJ, Park KS, Park HS, et al. A distinct tolerogenic subset of splenic IDO(+)CD11b(+) dendritic cells from orally tolerized mice is responsible for induction of systemic immune tolerance and suppression of collagen-induced arthritis. Cell Immunol. 2012; 278(1-2): 45-54.

[183]

Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2, 3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol. 2005; 175(9): 5601-5605.

[184]

Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2, 3-dioxygenase activity in dendritic cells. J Immunol. 2004; 172(7): 4100-4110.

[185]

Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004; 4(10): 762-774.

[186]

Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2, 3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000; 164(7): 3596-3599.

[187]

Zheng X, Koropatnick J, Chen D, et al. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int J Cancer. 2013; 132(4): 967-977.

[188]

Adikari SB, Lian H, Link H, Huang YM, Xiao BG. Interferon-gamma-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis. Clin Exp Immunol. 2004; 138(2): 230-236.

[189]

Orabona C, Pallotta MT, Grohmann U. Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2, 3-dioxygenase. Mol Med. 2012; 18(1): 834-842.

[190]

Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal. 2023; 21(1): 348.

[191]

Cader MZ, Boroviak K, Zhang Q, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol. 2016; 17(9): 1046-1056.

[192]

Melki I, Frémond ML. JAK Inhibition in Juvenile Idiopathic Arthritis (JIA): Better Understanding of a Promising Therapy for Refractory Cases. J Clin Med. 2023; 12(14): 4695

[193]

Lu K, Li Y, Xiao H. LACC1 promoted nerve injury in an anesthesia-induced cognitive disorder model via RIP2 expression through ROS-NOD2 induction. Altern Ther Health Med. 2023; 30(8): 202-207.

[194]

Wei Z, Oh J, Flavell RA, Crawford JM. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature. 2022; 609(7926): 348-353.

[195]

Nakano T, Goto S, Takaoka Y, et al. A novel moonlight function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for immunomodulation. Biofactors. 2018; 44(6): 597-608.

[196]

Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon functions. Clin Exp Pharmacol Physiol. 2012; 39(8): 674-9.

[197]

El Kadmiri N, Slassi I, El Moutawakil B, et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease. Pathol Biol (Paris). 2014; 62(6): 333-336.

[198]

White MR, Garcin ED. D-glyceraldehyde-3-phosphate dehydrogenase structure and function. Subcell Biochem. 2017; 83: 413-453.

[199]

Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev. 2018; 37(4): 665-676.

[200]

Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2005; 45: 269-290.

[201]

Galván-Peña S, Carroll RG, Newman C, et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun. 2019; 10(1): 338.

[202]

Degrandi D, Hoffmann R, Beuter-Gunia C, Pfeffer K. The proinflammatory cytokine-induced IRG1 protein associates with mitochondria. J Interferon Cytokine Res. 2009; 29(1): 55-67.

[203]

Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA. 2013; 110(19): 7820-7825.

[204]

Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab. 2024; 35(7): 586-606.

[205]

Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018; 556(7699): 113-117.

[206]

Li Y, Zhang P, Wang C, et al. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J Biol Chem. 2013; 288(23): 16225-16234.

[207]

Domínguez-Andrés J, Novakovic B, Li Y, et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab. 2019; 29(1): 211-220.e5.

[208]

Sohail A, Iqbal AA, Sahini N, et al. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog. 2022; 18(1): e1010219.

[209]

Hooftman A, Angiari S, Hester S, et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 2020; 32(3): 468-478.e7.

[210]

Song J, Zhang Y, Frieler RA, et al. Itaconate suppresses atherosclerosis by activating a Nrf2-dependent antiinflammatory response in macrophages in mice. J Clin Invest. 2023; 134(3):e173034

[211]

Zeng YR, Song JB, Wang D, et al. The immunometabolite itaconate stimulates OXGR1 to promote mucociliary clearance during the pulmonary innate immune response. J Clin Invest. 2023; 133(6):e160463

[212]

Weiss JM, Davies LC, Karwan M, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest. 2018; 128(9): 3794-3805.

[213]

Zhao H, Teng D, Yang L, et al. Myeloid-derived itaconate suppresses cytotoxic CD8(+) T cells and promotes tumour growth. Nat Metab. 2022; 4(12): 1660-1673.

[214]

Kohl L, Siddique M, Bodendorfer B, et al. Macrophages inhibit Coxiella burnetii by the ACOD1-itaconate pathway for containment of Q fever. EMBO Mol Med. 2023; 15(2): e15931.

[215]

Schuster EM, Epple MW, Glaser KM, et al. TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages. Nat Metab. 2022; 4(7): 856-866.

[216]

Sharma R, Das O, Damle SG, Sharma AK. Isocitrate lyase: a potential target for anti-tubercular drugs. Recent Pat Inflamm Allergy Drug Discov. 2013; 7(2): 114-123.

[217]

Kwai BXC, Collins AJ, Middleditch MJ, Sperry J, Bashiri G, Leung IKH. Itaconate is a covalent inhibitor of the Mycobacterium tuberculosis isocitrate lyase. RSC Med Chem. 2021; 12(1): 57-61.

[218]

Ramalho T, Assis PA, Ojelabi O, et al. Itaconate impairs immune control of Plasmodium by enhancing mtDNA-mediated PD-L1 expression in monocyte-derived dendritic cells. Cell Metab. 2024; 36(3): 484-497.e6.

[219]

Zhao Y, Liu Z, Liu G, et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 2023; 35(10): 1688-1703.e10.

[220]

Saveljeva S, Sewell GW, Ramshorn K, et al. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab. 2022; 34(1): 106-124.e10.

[221]

Yue Y, Huang W, Liang J, et al. IL4I1 is a novel regulator of M2 macrophage polarization that can inhibit T cell activation via L-tryptophan and arginine depletion and IL-10 production. PLoS One. 2015; 10(11): e0142979.

[222]

Zambello R, Barilà G, Manni S, Piazza F, Semenzato G. NK cells and CD38: implication for (immuno)therapy in plasma cell dyscrasias. Cells. 2020; 9(3): 768

[223]

Mallone R, Funaro A, Zubiaur M, et al. Signaling through CD38 induces NK cell activation. Int Immunol. 2001; 13(4): 397-409.

[224]

Wang H, Fang K, Yan W, Chang X. T-cell immune imbalance in rheumatoid arthritis is associated with alterations in NK cells and NK-like T cells expressing CD38. J Innate Immun. 2022; 14(2): 148-166.

[225]

Qian S, Xiong C, Wang M, et al. CD38(+)CD39(+) NK cells associate with HIV disease progression and negatively regulate T cell proliferation. Front Immunol. 2022; 13: 946871.

[226]

Morandi F, Horenstein AL, Chillemi A, et al. CD56brightCD16-NK cells produce adenosine through a CD38-mediated pathway and act as regulatory cells inhibiting autologous CD4+ T cell proliferation. J Immunol. 2015; 195(3): 965-972.

[227]

Humbel M, Bellanger F, Fluder N, et al. Restoration of NK cell cytotoxic function with elotuzumab and daratumumab promotes elimination of circulating plasma cells in patients with SLE. Front Immunol. 2021; 12: 645478.

[228]

Chami B, Okuda M, Moayeri M, et al. Anti-CD38 monoclonal antibody interference with blood compatibility testing: Differentiating isatuximab and daratumumab via functional epitope mapping. Transfusion. 2022; 62(11): 2334-2348.

[229]

de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011; 186(3): 1840-1848.

[230]

Gao Y, Li L, Zheng Y, Zhang W, Niu B, Li Y. Monoclonal antibody daratumumab promotes macrophage-mediated anti-myeloma phagocytic activity via engaging FC gamma receptor and activation of macrophages. Mol Cell Biochem. 2022; 477(8): 2015-2024.

[231]

Offidani M, Corvatta L, Morè S, et al. Daratumumab for the management of newly diagnosed and relapsed/refractory multiple myeloma: current and emerging treatments. Front Oncol. 2020; 10: 624661.

[232]

De Novellis D, Fontana R, Giudice V, Serio B, Selleri C. Innovative anti-CD38 and anti-BCMA targeted therapies in multiple myeloma: mechanisms of action and resistance. Int J Mol Sci. 2022; 24(1): 645

[233]

Franssen LE, Stege CAM, Zweegman S, van de Donk N, Nijhof IS. Resistance mechanisms towards CD38-directed antibody therapy in multiple myeloma. J Clin Med. 2020; 9(4): 1195

[234]

van de Donk N, Usmani SZ. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front Immunol. 2018; 9: 2134.

[235]

Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016; 128(1): 37-44.

[236]

Usmani SZ, Quach H, Mateos MV, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): updated outcomes from a randomised, multicentre, open-label, phase 3 study. Lancet Oncol. 2022; 23(1): 65-76.

[237]

Usmani SZ, Quach H, Mateos MV, et al. Final analysis of carfilzomib, dexamethasone, and daratumumab vs carfilzomib and dexamethasone in the CANDOR study. Blood Adv. 2023; 7(14): 3739-3748.

[238]

Saltarella I, Desantis V, Melaccio A, et al. Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma. Cells. 2020; 9(1): 167

[239]

Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res. 2014; 20(17): 4574-4583.

[240]

Zhu C, Song Z, Wang A, et al. Isatuximab acts through Fc-dependent, independent, and direct pathways to kill multiple myeloma cells. Front Immunol. 2020; 11: 1771.

[241]

Feng X, Zhang L, Acharya C, et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res. 2017; 23(15): 4290-4300.

[242]

Moreau P, Dimopoulos MA, Mikhael J, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet. 2021; 397(10292): 2361-2371.

[243]

Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019; 394(10214): 2096-2107.

[244]

Raab MS, Engelhardt M, Blank A, et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: a first-in-human, multicentre, phase 1–2a trial. Lancet Haematol. 2020; 7(5): e381-e394.

[245]

Busch L, Mougiakakos D, Büttner-Herold M, et al. Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway. Leukemia. 2018; 32(11): 2445-2458.

[246]

Fedyk ER, Zhao L, Koch A, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of the anti-CD38 cytolytic antibody TAK-079 in healthy subjects. Br J Clin Pharmacol. 2020; 86(7): 1314-1325.

[247]

Korver W, Carsillo M, Yuan J, et al. A reduction in B, T, and natural killer cells expressing CD38 by TAK-079 inhibits the induction and progression of collagen-induced arthritis in cynomolgus monkeys. J Pharmacol Exp Ther. 2019; 370(2): 182-196.

[248]

Ugamraj HS, Dang K, Ouisse LH, et al. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. MAbs. 2022; 14(1): 2095949.

[249]

Pouleau B, Estoppey C, Suere P, et al. Preclinical characterization of ISB 1342, a CD38 × CD3 T-cell engager for relapsed/refractory multiple myeloma. Blood. 2023; 142(3): 260-273.

[250]

Keller AL, Reiman LT, Perez de Acha O, et al. Ex vivo efficacy of SAR442257 anti-CD38 trispecific T-cell engager in multiple myeloma relapsed after daratumumab and BCMA-targeted therapies. Cancer Res Commun. 2024; 4(3): 757-764.

[251]

Frerichs KA, Verkleij CPM, Dimopoulos MA, et al. Efficacy and safety of durvalumab combined with daratumumab in daratumumab-refractory multiple myeloma patients. Cancers (Basel). 2021; 13(10): 2452

[252]

Simonelli M, Garralda E, Eskens F, et al. Isatuximab plus atezolizumab in patients with advanced solid tumors: results from a phase I/II, open-label, multicenter study. ESMO Open. 2022; 7(5): 100562.

[253]

Haffner CD, Becherer JD, Boros EE, et al. Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J Med Chem. 2015; 58(8): 3548-3571.

[254]

Tarragó MG, Chini CCS, Kanamori KS, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) decline. Cell Metab. 2018; 27(5): 1081-1095.e10.

[255]

Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell. 2024; 23(1): e13920.

[256]

Peclat TR, Thompson KL, Warner GM, et al. CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging. Aging Cell. 2022; 21(4): e13589.

[257]

Escande C, Nin V, Price NL, et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013; 62(4): 1084-1093.

[258]

Ogura Y, Kitada M, Xu J, Monno I, Koya D. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD(+)/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats. Aging (Albany NY). 2020; 12(12): 11325-11336.

[259]

Alabarse PG, Oliveira P, Qin H, et al. The NADase CD38 is a central regulator in gouty inflammation and a novel druggable therapeutic target. Inflamm Res. 2024; 73(5): 739-751

[260]

Lagu B, Wu X, Kulkarni S, et al. Orally bioavailable enzymatic inhibitor of CD38, MK-0159, protects against ischemia/reperfusion injury in the murine heart. J Med Chem. 2022; 65(13): 9418-9446.

[261]

Roders N, Nakid-Cordero C, Raineri F, et al. Dual chimeric antigen receptor T cells targeting CD38 and SLAMF7 with independent signaling demonstrate preclinical efficacy and safety in multiple myeloma. Cancer Immunol Res. 2024; 12(4): 478-490.

[262]

Li H, Song W, Wu J, et al. CAR-T cells targeting CD38 and LMP1 exhibit robust antitumour activity against NK/T cell lymphoma. BMC Med. 2023; 21(1): 330.

[263]

van der Schans JJ, Wang Z, van Arkel J, et al. Specific targeting of multiple myeloma by dual split-signaling chimeric antigen receptor T cells directed against CD38 and CD138. Clin Cancer Res. 2023; 29(20): 4219-4229.

[264]

Asadi M, Kiani R, Razban V, et al. Harnessing the power of CAR-NK cells: a promising off-the-shelf therapeutic strategy for CD38-positive malignancies. Iran J Immunol. 2023; 20(4): 410-426.

[265]

Edri A, Ben-Haim N, Hailu A, et al. Nicotinamide-expanded allogeneic natural killer cells with CD38 deletion, expressing an enhanced CD38 chimeric antigen receptor, target multiple myeloma cells. Int J Mol Sci. 2023; 24(24):17231

[266]

Tang K, Wang B, Yu B, Liu HM. Indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors and PROTAC-based degraders for cancer therapy. Eur J Med Chem. 2022; 227: 113967.

[267]

Li F, Zhang R, Li S, Liu J. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol. 2017; 47: 70-77.

[268]

Zhu MMT, Dancsok AR, Nielsen TO. Indoleamine dioxygenase inhibitors: clinical rationale and current development. Curr Oncol Rep. 2019; 21(1): 2.

[269]

Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation. Cancer Cell. 2018; 33(3): 480-494.e7.

[270]

Della Corte CM, Ciaramella V, Ramkumar K, et al. Triple blockade of Ido-1, PD-L1 and MEK as a potential therapeutic strategy in NSCLC. J Transl Med. 2022; 20(1): 541.

[271]

Mariotti V, Han H, Ismail-Khan R, et al. Effect of taxane chemotherapy with or without indoximod in metastatic breast cancer: a randomized clinical trial. JAMA Oncol. 2021; 7(1): 61-69.

[272]

Beatty GL, Delman D, Yu J, et al. Treatment response in first-line metastatic pancreatic ductal adenocarcinoma is stratified by a composite index of tumor proliferation and CD8 T-cell infiltration. Clin Cancer Res. 2023; 29(17): 3514-3525.

[273]

Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017; 77(24): 6795-6811.

[274]

Fox E, Oliver T, Rowe M, et al. Indoximod: an immunometabolic adjuvant that empowers T cell activity in cancer. Front Oncol. 2018; 8: 370.

[275]

Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov. 2020; 15(10): 1223-1232.

[276]

Lewis-Ballester A, Pham KN, Batabyal D, et al. Structural insights into substrate and inhibitor binding sites in human indoleamine 2, 3-dioxygenase 1. Nat Commun. 2017; 8(1): 1693.

[277]

Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2, 3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 2018; 336: 175-203.

[278]

Long GV, Dummer R, Hamid O, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019; 20(8): 1083-1097.

[279]

Muller AJ, Manfredi MG, Zakharia Y, Prendergast GC. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol. 2019; 41(1): 41-48.

[280]

Chen S, Tan J, Zhang A. The ups, downs and new trends of IDO1 inhibitors. Bioorg Chem. 2021; 110: 104815.

[281]

Panfili E, Mondanelli G, Orabona C, et al. The catalytic inhibitor epacadostat can affect the non-enzymatic function of IDO1. Front Immunol. 2023; 14: 1134551.

[282]

Sonpavde G, Necchi A, Gupta S, et al. ENERGIZE: a Phase III study of neoadjuvant chemotherapy alone or with nivolumab with/without linrodostat mesylate for muscle-invasive bladder cancer. Future Oncol. 2020; 16(2): 4359-4368.

[283]

Nelp MT, Kates PA, Hunt JT, et al. Immune-modulating enzyme indoleamine 2, 3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA. 2018; 115(13): 3249-3254.

[284]

Yao Y, Liang H, Fang X, et al. What is the prospect of indoleamine 2, 3-dioxygenase 1 inhibition in cancer? Extrapolation from the past. J Exp Clin Cancer Res. 2021; 40(1): 60.

[285]

Companies scaling back IDO1 inhibitor trials. Cancer Discov. 2018; 8(7): Of5.

[286]

Davies C, Dötsch L, Ciulla MG, et al. Identification of a novel pseudo-natural product type IV IDO1 inhibitor chemotype. Angew Chem Int Ed Engl. 2022; 61(40): e202209374.

[287]

Hou X, Gong X, Mao L, Zhao J, Yang J. Discovery of novel 1, 2, 3-triazole derivatives as IDO1 inhibitors. Pharmaceuticals (Basel). 2022; 15(11): 1316

[288]

Zhang Y, Hu Z, Zhang J, Ren C, Wang Y. Dual-target inhibitors of indoleamine 2, 3 dioxygenase 1 (Ido1): a promising direction in cancer immunotherapy. Eur J Med Chem. 2022; 238: 114524.

[289]

Fan QZ, Zhou J, Zhu YB, et al. Design, synthesis, and biological evaluation of a novel indoleamine 2, 3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor. Bioorg Chem. 2020; 105: 104401.

[290]

Fang K, Wu S, Dong G, et al. Discovery of IDO1 and DNA dual targeting antitumor agents. Org Biomol Chem. 2017; 15(47): 9992-9995.

[291]

Gibney GT, Hamid O, Lutzky J, et al. Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. J Immunother Cancer. 2019; 7(1): 80.

[292]

Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. 2019; 10(1): 5091.

[293]

McDonald B, Reep B, Lapetina EG, Molina y Vedia L. Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA. 1993; 90(23): 11122-11126.

[294]

Mück-Seler D, Pivac N. TCH-346 (Novartis). IDrugs. 2000; 3(5): 530-535.

[295]

Jenkins JL, Tanner JJ. High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 2006; 62(Pt 3): 290-301.

[296]

Harraz MM, Snyder SH. Nitric oxide-GAPDH transcriptional signaling mediates behavioral actions of cocaine. CNS Neurol Disord Drug Targets. 2015; 14(6): 757-763.

[297]

Chen F, Elgaher WAM, Winterhoff M, et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat Metab. 2022; 4(5): 534-546.

[298]

Winterhoff M, Chen F, Sahini N, et al. Establishment, validation, and initial application of a sensitive LC-MS/MS assay for quantification of the naturally occurring isomers itaconate, mesaconate, and citraconate. Metabolites. 2021; 11(5): 270

[299]

Borek B, Gajda T, Golebiowski A, Blaszczyk R. Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorg Med Chem. 2020; 28(18): 115658.

[300]

Momma TY, Ottaviani JI. Arginase inhibitor, N(ω)-hydroxy-L-norarginine, spontaneously releases biologically active NO-like molecule: Limitations for research applications. Free Radic Biol Med. 2020; 152: 74-82.

[301]

Wang H, Ji J, Zhuang Y, Zhou X, Zhao Y, Zhang X. PMA induces the differentiation of monocytes into immunosuppressive MDSCs. Clin Exp Immunol. 2021; 206(2): 216-225.

[302]

Secondini C, Coquoz O, Spagnuolo L, et al. Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade. Oncoimmunology. 2017; 6(6): e1316437.

[303]

Hansakon A, Angkasekwinai P. Arginase inhibitor reduces fungal dissemination in murine pulmonary cryptococcosis by promoting anti-cryptococcal immunity. Int Immunopharmacol. 2024; 132: 111995.

[304]

Van Zandt MC, Jagdmann GE, Whitehouse DL, et al. Discovery of N-substituted 3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acids as highly potent third-generation inhibitors of human arginase I and II. J Med Chem. 2019; 62(17): 8164-8177.

[305]

Bergman JA, Woan K, Perez-Villarroel P, Villagra A, Sotomayor EM, Kozikowski AP. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J Med Chem. 2012; 55(22): 9891-9899.

[306]

Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA. 2003; 100(8): 4389-9443.

[307]

Barlow AL, van Drunen CM, Johnson CA, Tweedie S, Bird A, Turner BM. dSIR2 and dHDAC6: two novel, inhibitor-resistant deacetylases in Drosophila melanogaster. Exp Cell Res. 2001; 265(1): 90-103.

[308]

Wang B, Chen J, Caserto JS, Wang X, Ma M. An in situ hydrogel-mediated chemo-immunometabolic cancer therapy. Nat Commun. 2022; 13(1): 3821.

[309]

Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2020; 9(1): 1777625.

[310]

Bartok O, Pataskar A, Nagel R, et al. Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature. 2021; 590(7845): 332-337.

[311]

Ng KP, Manjeri A, Lee LM, et al. The arginase inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) induces apoptosis in leukemic cells specifically under hypoxic conditions but CRISPR/Cas9 excludes arginase 2 (ARG2) as the functional target. PLoS One. 2018; 13(10): e0205254.

[312]

Wu W, Zhong W, Lin Z, Yan J. Blockade of indoleamine 2, 3-dioxygenase attenuates lipopolysaccharide-induced kidney injury by inhibiting TLR4/NF-κB signaling. Clin Exp Nephrol. 2023; 27(6): 495-505.

[313]

Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Massoco CO, Kfoury Junior JR. IDO blockade negatively regulates the CTLA-4 signaling in breast cancer cells. Immunol Res. 2023; 71(5): 679-686.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

259

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/