RNA modification in normal hematopoiesis and hematologic malignancies

Xi Chen , Yixiao Yuan , Fan Zhou , Lihua Li , Jun Pu , Xiulin Jiang

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e787

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e787 DOI: 10.1002/mco2.787
REVIEW

RNA modification in normal hematopoiesis and hematologic malignancies

Author information +
History +
PDF

Abstract

N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.

Keywords

hematopoietic stem cells / leukemia stem cells / potential targets / RNA modification / signaling pathway

Cite this article

Download citation ▾
Xi Chen, Yixiao Yuan, Fan Zhou, Lihua Li, Jun Pu, Xiulin Jiang. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm, 2024, 5(11): e787 DOI:10.1002/mco2.787

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cairns-Gibson DF, Cockroft SL. Functionalised nanopores: chemical and biological modifications. Chem Sci. 2022; 13(7): 1869-1882.

[2]

Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017; 169(7): 1187-1200.

[3]

Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020; 20(6): 303-322.

[4]

An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022; 21(1): 14.

[5]

Li J, Zhang H, Wang H. N(1)-methyladenosine modification in cancer biology: current status and future perspectives. Comput Struct Biotechnol J. 2022; 20: 6578-6585.

[6]

Wang Y, Wei J, Feng L, et al. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol Cancer. 2023; 22(1): 81.

[7]

Pseudoephedrine. Drugs and Lactation Database (LactMed®). National Institute of Child Health and Human Development; 2006.

[8]

Fang L, Huang H, Lv J, et al. m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis. 2023; 14(8): 520.

[9]

Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N(7)-methylguanosine (m7G) in cancer. J Hematol Oncol. 2022; 15(1): 63.

[10]

Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Nat Acad Sci USA. 1974; 71(10): 3971-3975.

[11]

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485(7397): 201-206.

[12]

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012; 149(7): 1635-1646.

[13]

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015; 12(8): 767-772.

[14]

Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 2006; 34: D145-D149. Database issue.

[15]

Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022; 50(D1): D231-D235.

[16]

Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019; 20(10): 608-624.

[17]

Dzierzak E, Bigas A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell. 2018; 22(5): 639-651.

[18]

Wei Y, Gong Y, Wei S, et al. Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharmacal Res. 2022; 45(8): 558-571.

[19]

Yokomizo T, Suda T. Development of the hematopoietic system: expanding the concept of hematopoietic stem cell-independent hematopoiesis. Trends Cell Biol. 2024; 34(2): 161-172.

[20]

Soares-da-Silva F, Elsaid R, Peixoto MM, et al. Assembling the layers of the hematopoietic system: a window of opportunity for thymopoiesis in the embryo. Immunol Rev. 2023; 315(1): 54-70.

[21]

Kandarakov O, Belyavsky A, Semenova E. Bone marrow niches of hematopoietic stem and progenitor cells. Int J Mol Sci. 2022; 23(8): 4462.

[22]

Pelcovits A, Niroula R. Acute myeloid leukemia: a review. R I Med J (2013). 2020; 103(3): 38-40.

[23]

Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023; 98(3): 502-526.

[24]

Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ. 2021; 375: n2026.

[25]

Sánchez-García I, Cobaleda C. Leukemia stem cells: concept and implications. Methods Mol Biol. 2021; 2185: 25-37.

[26]

Testa U. Leukemia stem cells. Ann Hematol. 2011; 90(3): 245-271.

[27]

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414(6859): 105-111.

[28]

Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021; 6(1): 74.

[29]

Deng LJ, Deng WQ, Fan SR, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022; 21(1): 52.

[30]

Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017; 18(1): 31-42.

[31]

Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019; 74(4): 640-650.

[32]

He PC, He C. m(6) A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 2021; 40(3): e105977.

[33]

Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m⁶A RNA methylation. Nat Rev Genet. 2014; 15(5): 293-306.

[34]

Wu Z, Ren J, Liu GH. Deciphering RNA m(6) A regulation in aging: perspectives on current advances and future directions. Aging Cell. 2023; 22(10): e13972.

[35]

Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell. 2018; 22(2): 191-205. e9.

[36]

Shi L, Hu H, Sun P, et al. RPL38 knockdown inhibits the inflammation and apoptosis in chondrocytes through regulating METTL3-mediated SOCS2 m6A modification in osteoarthritis. Inflamm Res. 2022; 71(7-8): 977-989.

[37]

Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017; 65(2): 529-543.

[38]

Sun Y, Shen W, Hu S, et al. METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. J Exp Clin Cancer Res. 2023; 42(1): 65.

[39]

Sun C, Wang J, Li H, et al. METTL14 regulates CD8(+)T-cell activation and immune responses to anti-PD-1 therapy in lung cancer. World J Surg Oncol. 2024; 22(1): 128.

[40]

Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24(2): 177-189.

[41]

Gu C, Shi X, Dai C, et al. RNA m(6)A modification in cancers: molecular mechanisms and potential clinical applications. Innovation (Camb). 2020; 1(3): 100066.

[42]

Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016; 537(7620): 369-373.

[43]

Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020; 37(3): 270-288.

[44]

Wang X, Tian L, Li Y, et al. RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. J Exp Clin Cancer Res. 2021; 40(1): 80.

[45]

Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer. 2019; 18(1): 186.

[46]

Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA. Onco Targets Ther. 2019; 12: 3421-3428.

[47]

Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018; 69(6): 1028-1038. e6.

[48]

Adhikari S, Xiao W, Zhao YL, Yang YG. m(6)A: signaling for mRNA splicing. RNA Biol. 2016; 13(9): 756-759.

[49]

Zhu D, Zhou J, Zhao J, et al. ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol. 2019; 234(6): 8899-8907.

[50]

Zhang H, Yin M, Huang H, Zhao G, Lu M. METTL16 in human diseases: what should we do next?. Open Med (Wars). 2023; 18(1): 20230856.

[51]

Wei J, Yu X, Yang L, et al. FTO mediates LINE1 m(6)A demethylation and chromatin regulation in mESCs and mouse development. Science. 2022; 376(6596): 968-973.

[52]

Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol. 2023; 20(8): 507-526.

[53]

A Alemu E, He C, Klungland A. ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair (Amst). 2016; 44: 87-91.

[54]

Yu F, Zhu AC, Liu S, et al. RBM33 is a unique m(6)A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity. Mol Cell. 2023; 83(12): 2003-2019. e6.

[55]

Zhang XL, Chen XH, Xu B, et al. K235 acetylation couples with PSPC1 to regulate the m(6)A demethylation activity of ALKBH5 and tumorigenesis. Nat Commun. 2023; 14(1): 3815.

[56]

Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018; 20(3): 285-295.

[57]

Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014; 505(7481): 117-120.

[58]

Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016; 61(4): 507-519.

[59]

Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. eLife. 2017; 6: e31311.

[60]

Li Y, Zheng JN, Wang EH, Gong CJ, Lan KF, Ding X. The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ. 2020; 8: e10385.

[61]

Zou Z, Sepich-Poore C, Zhou X, Wei J, He C. The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol. 2023; 24(1): 17.

[62]

Wang L, Zhu L, Liang C, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol. 2023; 79(5): 1185-1200.

[63]

Chen B, Hong Y, Gui R, et al. N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis. Cell Death Dis. 2022; 13(9): 804.

[64]

Chang G, Shi L, Ye Y, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020; 38(6): 857-871. e7.

[65]

Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019; 18(1): 143.

[66]

Song B, Zeng Y, Cao Y, et al. Emerging role of METTL3 in inflammatory diseases: mechanisms and therapeutic applications. Front Immunol. 2023; 14: 1221609.

[67]

Wu B, Su S, Patil DP, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 2018; 9(1): 420.

[68]

Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015; 162(6): 1299-1308.

[69]

Yang H, Lachtara EM, Ran X, et al. The RNA m5C modification in R-loops as an off switch of Alt-NHEJ. Nat Commun. 2023; 14(1): 6114.

[70]

Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m⁵C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes. 2019; 10(2): 102.

[71]

Liao H, Gaur A, McConie H, et al. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res. 2022; 50(18): 10695-10716.

[72]

Balachander K, Priyadharsini JV, Roy A, Paramasivam A. Emerging role of RNA m5C modification in cardiovascular diseases. J Cardiovasc Transl Res. 2023; 16(3): 598-605.

[73]

Zhang Y, Wang C. Demethyltransferase AlkBH1 substrate diversity and relationship to human diseases. Mol Biol Rep. 2021; 48(5): 4747-4756.

[74]

Joshi K, Liu S, Breslin SJP, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci. 2022; 79(7): 363.

[75]

Zhang LS, Liu C, Ma H, et al. Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell. 2019; 74(6): 1304-1316. e8.

[76]

Chu JM, Ye TT, Ma CJ, et al. Existence of internal N7-methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chem Biol. 2018; 13(12): 3243-3250.

[77]

Malbec L, Zhang T, Chen YS, et al. Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation. Cell Res. 2019; 29(11): 927-941.

[78]

Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m(6)A mRNA modifications. Nat Rev Mol Cell Biol. 2023; 24(10): 714-731.

[79]

Huang M, Long J, Yao Z, et al. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res. 2023; 83(1): 89-102.

[80]

Pandolfini L, Barbieri I, Bannister AJ, et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol Cell. 2019; 74(6): 1278-1290. e9.

[81]

Jin C, Wang T, Zhang D, et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac(4)C acetylation of KIF23 mRNA. J Exp Clin Cancer Res. 2022; 41(1): 345.

[82]

Jin G, Xu M, Zou M, Duan S. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic review. Mol Ther Nucleic Acids. 2020; 20: 13-24.

[83]

Ikeuchi Y, Kitahara K, Suzuki T. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J. 2008; 27(16): 2194-2203.

[84]

Cerneckis J, Cui Q, He C, Yi C, Shi Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol Sci. 2022; 43(6): 522-535.

[85]

Dai Q, Zhang LS, Sun HL, et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol. 2023; 41(3): 344-354.

[86]

Wu H, Feigon J. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc Nat Acad Sci USA. 2007; 104(16): 6655-6660.

[87]

Savva YA, Rieder LE, Reenan RA. The ADAR protein family. Genome Biol. 2012; 13(12): 252.

[88]

Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. A mammalian RNA editing enzyme. Nature. 1996; 379(6564): 460-464.

[89]

Qiu S, Li W, Xiong H, et al. Single-cell RNA sequencing reveals dynamic changes in A-to-I RNA editome during early human embryogenesis. Bmc Genomics [Electronic Resource]. 2016; 17(1): 766.

[90]

Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016; 17(2): 83-96.

[91]

Hartner JC, Schmittwolf C, Kispert A, Müller AM, Higuchi M, Seeburg PH. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem. 2004; 279(6): 4894-4902.

[92]

Brachova P, Alvarez NS, Hong X, et al. Inosine RNA modifications are enriched at the codon wobble position in mouse oocytes and eggs†. Biol Reprod. 2019; 101(5): 938-949.

[93]

Brachova P, Alvarez NS, Christenson LK. Loss of Cnot6l impairs inosine RNA modifications in mouse oocytes. Int J Mol Sci. 2021; 22(3): 1191.

[94]

Zhou H, Kimsey IJ, Nikolova EN, et al. m(1)A and m(1)G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs. Nat Struct Mol Biol. 2016; 23(9): 803-810.

[95]

Shi Q, Xue C, Yuan X, He Y, Yu Z. Gene signatures and prognostic values of m1A-related regulatory genes in hepatocellular carcinoma. Sci Rep. 2020; 10(1): 15083.

[96]

Liu F, Clark W, Luo G, et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell. 2016; 167(3): 816-828. e16.

[97]

Dai X, Wang T, Gonzalez G, Wang Y. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal Chem. 2018; 90(11): 6380-6384.

[98]

Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015; 125(17): 2605-2613.

[99]

Li Z, He XC, Li L. Hematopoietic stem cells: self-renewal and expansion. Curr Opin Hematol. 2019; 26(4): 258-265.

[100]

Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018; 553(7689): 418-426.

[101]

Carroll D, St Clair DK. Hematopoietic stem cells: normal versus malignant. Antioxid Redox Signal. 2018; 29(16): 1612-1632.

[102]

Durand C, Charbord P, Jaffredo T. The crosstalk between hematopoietic stem cells and their niches. Curr Opin Hematol. 2018; 25(4): 285-289.

[103]

Haas S, Trumpp A, Milsom MD. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell. 2018; 22(5): 627-638.

[104]

Smith C, Storms B. Hematopoietic stem cells. Clin Orthop Relat Res. 2000; 379: S91-S97. Suppl.

[105]

Yang D, de Haan G. Inflammation and aging of hematopoietic stem cells in their niche. Cells. 2021; 10(8): 1849.

[106]

Singh S, Jakubison B, Keller JR. Protection of hematopoietic stem cells from stress-induced exhaustion and aging. Curr Opin Hematol. 2020; 27(4): 225-231.

[107]

Höfer T, Rodewald HR. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 2018; 132(11): 1106-1113.

[108]

Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010; 2(6): 640-653.

[109]

Bozhilov YK, Hsu I, Brown EJ, Wilkinson AC. In vitro human haematopoietic stem cell expansion and differentiation. Cells. 2023; 12(6): 896.

[110]

Vink CS, Popravko A, Dzierzak E. De novo hematopoietic (stem) cell generation—a differentiation or stochastic process?. Curr Opin Cell Biol. 2023; 85: 102255.

[111]

Nakamura-Ishizu A, Ito K, Suda T. Hematopoietic stem cell metabolism during development and aging. Dev Cell. 2020; 54(2): 239-255.

[112]

Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol. 2023; 123: 1-17.

[113]

Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther. 2020; 11(1): 483.

[114]

Noh JY. Megakaryopoiesis and platelet biology: roles of transcription factors and emerging clinical implications. Int J Mol Sci. 2021; 22(17): 9615.

[115]

Feng M, Xie X, Han G, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood. 2021; 138(1): 71-85.

[116]

Baudino TA, McKay C, Pendeville-Samain H, et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002; 16(19): 2530-2543.

[117]

Cheng Y, Xie W, Pickering BF, et al. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021; 39(7): 958-972. e8.

[118]

Mishra S, Raval M, Kachhawaha AS, Tiwari BS, Tiwari AK. Aging: epigenetic modifications. Prog Mol Biol Transl Sci. 2023; 197: 171-209.

[119]

Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry. 2020; 87(1): 22-33.

[120]

Jiang P, Wang H, Zheng J, Han Y, Huang H, Qian P. Epigenetic regulation of hematopoietic stem cell homeostasis. Blood Sci. 2019; 1(1): 19-28.

[121]

Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet. 2022; 38(7): 676-707.

[122]

Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013; 38(1): 23-38.

[123]

Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018; 19(6): 371-384.

[124]

Chen L, Xia S, Wang F, et al. m(6)A methylation-induced NR1D1 ablation disrupts the HSC circadian clock and promotes hepatic fibrosis. Pharmacol Res. 2023; 189: 106704.

[125]

Li L, Bowling S, McGeary SE, et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell. 2023; 186(23): 5183-5199. e22.

[126]

Zhao D, Gao Y, Su Y, et al. Oroxylin A regulates cGAS DNA hypermethylation induced by methionine metabolism to promote HSC senescence. Pharmacol Res. 2023; 187: 106590.

[127]

Li Y, Xue M, Deng X, et al. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell. 2023; 30(8): 1072-1090. e10.

[128]

Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem. 2022; 29(14): 2399-2411.

[129]

Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016; 8(4): a019521.

[130]

Hong T, Li J, Guo L, et al. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. Nat Aging. 2023; 3(11): 1387-1400.

[131]

Sharma S, Gurudutta G. Epigenetic regulation of hematopoietic stem cells. Int J Stem Cells. 2016; 9(1): 36-43.

[132]

Park SM, Kim J, Hong CM, et al. SIRT1 is dispensable for maturation of hematopoietic stem cell in the bone marrow niche. Exp Ther Med. 2019; 18(3): 2341-2345.

[133]

Wang H, Diao D, Shi Z, et al. SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of Wnt signaling. Cell Stem Cell. 2016; 18(4): 495-507.

[134]

Bannister AJ, Kouzarides T. Reversing histone methylation. Nature. 2005; 436(7054): 1103-1106.

[135]

Shen X, Liu Y, Hsu YJ, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 2008; 32(4): 491-502.

[136]

Wang J, Saijo K, Skola D, et al. Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. Proc Nat Acad Sci USA. 2018; 115(2): E244-E252.

[137]

Agger K, Nishimura K, Miyagi S, Messling JE, Rasmussen KD, Helin K. The KDM4/JMJD2 histone demethylases are required for hematopoietic stem cell maintenance. Blood. 2019; 134(14): 1154-1158.

[138]

Cui K, Zang C, Roh TY, et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell. 2009; 4(1): 80-93.

[139]

Abraham BJ, Cui K, Tang Q, Zhao K. Dynamic regulation of epigenomic landscapes during hematopoiesis. Bmc Genomics [Electronic Resource]. 2013; 14: 193.

[140]

Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science. 2014; 345(6199): 943-949.

[141]

Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022; 23(6): 389-406.

[142]

Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021; 14(4): dmm047662.

[143]

Li Q, Ren X, Wang Y, Xin X. CircRNA: a rising star in leukemia. PeerJ. 2023; 11: e15577.

[144]

O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Nat Acad Sci USA. 2010; 107(32): 14235-14240.

[145]

Bissels U, Wild S, Tomiuk S, et al. Combined characterization of microRNA and mRNA profiles delineates early differentiation pathways of CD133+ and CD34+ hematopoietic stem and progenitor cells. Stem Cells. 2011; 29(5): 847-857.

[146]

Tenedini E, Roncaglia E, Ferrari F, et al. Integrated analysis of microRNA and mRNA expression profiles in physiological myelopoiesis: role of hsa-mir-299-5p in CD34+ progenitor cells commitment. Cell Death Dis. 2010; 1(2): e28.

[147]

Morceau F, Chateauvieux S, Gaigneaux A, Dicato M, Diederich M. Long and short non-coding RNAs as regulators of hematopoietic differentiation. Int J Mol Sci. 2013; 14(7): 14744-14770.

[148]

Cabezas-Wallscheid N, Klimmeck D, Hansson J, et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell. 2014; 15(4): 507-522.

[149]

Luo M, Jeong M, Sun D, et al. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell. 2015; 16(4): 426-438.

[150]

Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 2013; 500(7462): 345-349.

[151]

Ma XY, Wang JH, Wang JL, Ma CX, Wang XC, Liu FS. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomic. 2015; 16(1): 676.

[152]

Robin C, Lacaud G, Jaffredo T. Shedding light on hematopoietic stem cells: formation, regulation, and utilization. FEBS Lett. 2016; 590(22): 3963-3964.

[153]

Sigurdsson V, Miharada K. Regulation of unfolded protein response in hematopoietic stem cells. Int J Hematol. 2018; 107(6): 627-633.

[154]

Chen C, Liu Y, Liu Y, Zheng P. The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle. 2009; 8(8): 1158-1160.

[155]

Franczak S, Ulrich H, Ratajczak MZ. Hematopoietic stem cells on the crossroad between purinergic signaling and innate immunity. Purinergic Signal. 2023.

[156]

Zhang Y, Chen Z, Ju Z, Hu Q. Assessment of ferroptosis in hematopoietic stem and progenitor cells. Methods Mol Biol. 2023; 2712: 199-210.

[157]

He L, Aouida A, Mehtar A, Haouas H, Louache F. Metabolic analysis of mouse hematopoietic stem and progenitor cells. Methods Mol Biol. 2021; 2308: 107-115.

[158]

Long NA, Golla U, Sharma A, Claxton DF. Acute myeloid leukemia stem cells: origin, characteristics, and clinical implications. Stem Cell Rev Rep. 2022; 18(4): 1211-1226.

[159]

Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer. 2019; 58(12): 850-858.

[160]

Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506(7488): 328-333.

[161]

Buss EC, Ho AD. Leukemia stem cells. Int J Cancer. 2011; 129(10): 2328-2336.

[162]

Ma XY, Wei L, Lei Z, Chen Y, Ding Z, Chen ZS. Recent progress on targeting leukemia stem cells. Drug Discov Today. 2021; 26(8): 1904-1913.

[163]

Luo L, Han ZC. Leukemia stem cells. Int J Hematol. 2006; 84(2): 123-127.

[164]

Brown G. The social norm of hematopoietic stem cells and dysregulation in leukemia. Int J Mol Sci. 2022; 23(9): 5063.

[165]

Yanagisawa B, Ghiaur G, Smith BD, Jones RJ. Translating leukemia stem cells into the clinical setting: harmonizing the heterogeneity. Exp Hematol. 2016; 44(12): 1130-1137.

[166]

Mariani SA, Calabretta B. Leukemia stem cells: old concepts and new perspectives. Mol Aspects Med. 2014; 39: 102-109.

[167]

Jones CL, Inguva A, Jordan CT. Targeting energy metabolism in cancer stem cells: progress and challenges in leukemia and solid tumors. Cell Stem Cell. 2021; 28(3): 378-393.

[168]

Bhattacharjee R, Ghosh S, Nath A, et al. Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Crit Rev Oncol Hematol. 2022; 177: 103753.

[169]

Trumpp A, Haas S. Cancer stem cells: the adventurous journey from hematopoietic to leukemic stem cells. Cell. 2022; 185(8): 1266-1270.

[170]

Deng CH, Zhang QP. Leukemia stem cells in drug resistance and metastasis. Chin Med J (Engl). 2010; 123(7): 954-960.

[171]

Deslauriers AG, Kotini AG, Papapetrou EP. Modeling leukemia stem cells with patient-derived induced pluripotent stem cells. Methods Mol Biol. 2021; 2185: 411-422.

[172]

Becker MW, Jordan CT. Leukemia stem cells in 2010: current understanding and future directions. Blood Rev. 2011; 25(2): 75-81.

[173]

Zhang H, Li S. Concise review: exploiting unique biological features of leukemia stem cells for therapeutic benefit. Stem Cells Transl Med. 2019; 8(8): 768-774.

[174]

Ganan-Gomez I, Yang H, Ma F, et al. Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy. Nat Med. 2022; 28(3): 557-567.

[175]

Yu Z, Liu L, Shu Q, Li D, Wang R. Leukemia stem cells promote chemoresistance by inducing downregulation of lumican in mesenchymal stem cells. Oncol Lett. 2019; 18(4): 4317-4327.

[176]

Jiang Y, Liu L, Jiang Y, et al. Preclinical evaluation of the multiple tyrosine kinases inhibitor anlotinib in leukemia stem cells. Pharmaceuticals (Basel). 2022; 15(11): 1313.

[177]

Kagoya Y. NF-κB activity in myeloid leukemia stem cells. Rinsho Ketsueki. 2015; 56(4): 384-391.

[178]

Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020; 5(1): 8.

[179]

Xiao Q, Li X, Li Y, et al. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B. 2021; 11(4): 941-960.

[180]

Solá P, Mereu E, Bonjoch J, et al. Targeting lymphoid-derived IL-17 signaling to delay skin aging. Nat Aging. 2023; 3(6): 688-704.

[181]

Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011; 29(5): 591-599.

[182]

Borella G, Da Ros A, Borile G, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia. Blood. 2021; 138(7): 557-570.

[183]

Nemkov T, D’Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken). 2019; 2(2): e1139.

[184]

Forte D, García-Fernández M, Sánchez-Aguilera A, et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell Metab. 2020; 32(5): 829-843. e9.

[185]

Tabe Y, Konopleva M. Leukemia stem cells microenvironment. Adv Exp Med Biol. 2017; 1041: 19-32.

[186]

Almond LM, Charalampakis M, Ford SJ, Gourevitch D, Desai A. Myeloid sarcoma: presentation, diagnosis, and treatment. Clin Lymphoma Myeloma Leuk. 2017; 17(5): 263-267.

[187]

Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019; 94(11): 1266-1287.

[188]

Oliveira AF, Tansini A, Toledo T, et al. Immunophenotypic changes in juvenile myelomonocytic leukaemia after treatment with hypomethylating agent: Do they help to evaluate dept of response?. Br J Haematol. 2022; 197(3): 339-348.

[189]

Liu K, Zhu M, Huang Y, Wei S, Xie J, Xiao Y. CD123 and its potential clinical application in leukemias. Life Sci. 2015; 122: 59-64.

[190]

Ding Y, Gao H, Zhang Q. The biomarkers of leukemia stem cells in acute myeloid leukemia. Stem Cell Investig. 2017; 4: 19.

[191]

Herrmann H, Sadovnik I, Eisenwort G, et al. Delineation of target expression profiles in CD34+/CD38-and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv. 2020; 4(20): 5118-5132.

[192]

Wang Y, Yin C, Feng L, Wang C, Sheng G. Ara-C and anti-CD47 antibody combination therapy eliminates acute monocytic leukemia THP-1 cells in vivo and in vitro. Genet Mol Res. 2015; 14(2): 5630-5641.

[193]

Yan B, Chen Q, Shimada K, et al. Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia. 2019; 33(4): 931-944.

[194]

Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138(2): 271-285.

[195]

Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009; 138(2): 286-299.

[196]

He L, Arnold C, Thoma J, et al. CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Mol Med. 2022; 14(4): e14990.

[197]

Daga S, Rosenberger A, Quehenberger F, et al. High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML. Cancer Med. 2019; 8(4): 1771-1778.

[198]

Zhang B, Li M, McDonald T, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-β-catenin signaling. Blood. 2013; 121(10): 1824-1838.

[199]

Zhi L, Wang M, Rao Q, Yu F, Mi Y, Wang J. Enrichment of N-Cadherin and Tie2-bearing CD34+/CD38-/CD123+ leukemic stem cells by chemotherapy-resistance. Cancer Lett. 2010; 296(1): 65-73.

[200]

Pousse L, Korfi K, Medeiros BC, et al. CD25 targeting with the afucosylated human IgG1 antibody RG6292 eliminates regulatory T cells and CD25+ blasts in acute myeloid leukemia. Front Oncol. 2023; 13: 1150149.

[201]

Darwish NH, Sudha T, Godugu K, et al. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1. Oncotarget. 2016; 7(36): 57811-57820.

[202]

Eisenwort G, Sadovnik I, Keller A, et al. Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia. Leukemia. 2021; 35(11): 3176-3187.

[203]

Gu H, Chen C, Hou ZS, et al. PI3Kγ maintains the self-renewal of acute myeloid leukemia stem cells by regulating the pentose phosphate pathway. Blood. 2024; 143(19): 1965-1979.

[204]

Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017; 51(5): 1357-1369.

[205]

Zhou Y, Xu J, Luo H, Meng X, Chen M, Zhu D. Wnt signaling pathway in cancer immunotherapy. Cancer Lett. 2022; 525: 84-96.

[206]

Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016; 99: 141-149.

[207]

Láinez-González D, Alonso-Aguado AB, Alonso-Dominguez JM. Understanding the Wnt signaling pathway in acute myeloid leukemia stem cells: a feasible key against relapses. Biology. 2023; 12(5): 683.

[208]

Carter JL, Hege K, Yang J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020; 5(1): 288.

[209]

Tesanovic S, Krenn PW, Aberger F. Hedgehog/GLI signaling in hematopoietic development and acute myeloid leukemia-From bench to bedside. Front Cell Dev Biol. 2022; 10: 944760.

[210]

Aberger F, Hutterer E, Sternberg C, Del Burgo PJ, Hartmann TN. Acute myeloid leukemia—strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Commun Signal. 2017; 15(1): 8.

[211]

Campbell V, Copland M. Hedgehog signaling in cancer stem cells: a focus on hematological cancers. Stem Cells Cloning. 2015; 8: 27-38.

[212]

Dunbar AJ, Kim D, Lu M, et al. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis. Blood. 2023; 141(20): 2508-2519.

[213]

Jiang VC, Liu Y, Lian J, et al. Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma. J Clin Invest. 2023; 133(3): e165694.

[214]

Gao S, Zhou B, Li H, et al. Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol. 2018; 67: 32-40. e3.

[215]

Wang WT, Chen TQ, Zeng ZC, et al. The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol. 2020; 13(1): 78.

[216]

Cui C, Wang Y, Gong W, et al. Long non-coding RNA LINC00152 regulates self-renewal of leukemia stem cells and induces chemo-resistance in acute myeloid leukemia. Front Oncol. 2021; 11: 694021.

[217]

Zhu B, Zhong W, Cao X, et al. Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice. Sci Transl Med. 2022; 14(629): eabh2548.

[218]

Ge Y, Hong M, Zhang Y, et al. miR-30e-5p regulates leukemia stem cell self-renewal through the Cyb561/ROS signaling pathway. Haematologica. 2024; 109(2): 411-421.

[219]

Zhang L, Nguyen LXT, Chen YC, et al. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance. Nat Commun. 2021; 12(1): 6154.

[220]

Yang X, Liu J, Liu W, et al. circFAM193B interaction with PRMT6 regulates AML leukemia stem cells chemoresistance through altering the oxidative metabolism and lipid peroxidation. Leukemia. 2024; 38(5): 1057-1071.

[221]

Shang Z, Ming X, Wu J, Xiao Y. Downregulation of circ_0012152 inhibits proliferation and induces apoptosis in acute myeloid leukemia cells through the miR-625-5p/SOX12 axis. Hematol Oncol. 2021; 39(4): 539-548.

[222]

Lin G, Fei Y, Zhang Y. Hsa-circ_0003420 induces apoptosis in acute myeloid leukemia stem cells and impairs stem cell properties. Immunopharmacol Immunotoxicol. 2021; 43(5): 622-631.

[223]

Ma Z, Sugimura R, Lui KO. The role of m6A mRNA modification in normal and malignant hematopoiesis. J Leukocyte Biol. 2024; 115(1): 100-115.

[224]

Weng H, Huang H, Chen J. N(6)-methyladenosine RNA modification in normal and malignant hematopoiesis. Adv Exp Med Biol. 2023; 1442: 105-123.

[225]

Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018; 28(5): 507-517.

[226]

Han L, Dong L, Leung K, et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell. 2023; 30(1): 52-68. e13.

[227]

Zhang C, Chen Y, Sun B, et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature. 2017; 549(7671): 273-276.

[228]

Lv J, Zhang Y, Gao S, et al. Endothelial-specific m(6)A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Res. 2018; 28(2): 249-252.

[229]

Li Z, Qian P, Shao W, et al. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 2018; 28(9): 904-917.

[230]

Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019; 15(8): 1419-1437.

[231]

Vu LP, Pickering BF, Cheng Y, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017; 23(11): 1369-1376.

[232]

Li HB, Tong J, Zhu S, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 2017; 548(7667): 338-342.

[233]

Dermentzaki G, Furlan M, Tanaka I, et al. Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration. Cell Rep. 2024; 43(4): 113999.

[234]

Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022; 82(9): 1660-1677. e10.

[235]

Yang B, Liu Y, Xiao F, et al. Alkbh5 plays indispensable roles in maintaining self-renewal of hematopoietic stem cells. Open Med (Wars). 2023; 18(1): 20230766.

[236]

Gao Y, Zimmer JT, Vasic R, et al. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m(6)A modification-mediated RNA stability control. Cell Rep. 2023; 42(10): 113163.

[237]

Yu F, Wei J, Cui X, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 2021; 49(10): 5779-5797.

[238]

Paris J, Morgan M, Campos J, et al. Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 2019; 25(1): 137-148. e6.

[239]

Wang H, Zuo H, Liu J, et al. Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res. 2018; 28(10): 1035-1038.

[240]

Mapperley C, van de Lagemaat LN, Lawson H, et al. The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. J Exp Med. 2021; 218(3): e20200829.

[241]

Sheng Y, Wei J, Yu F, et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication. Blood. 2021; 138(26): 2838-2852.

[242]

Dang Q, Wu Q, Yu F, et al. m(6)A reader Ythdf3 protects hematopoietic stem cell integrity under stress by promoting the translation of Foxm1 and Asxl1 transcripts. Haematologica. 2022; 107(8): 1922-1927.

[243]

Zhang X, Cong T, Wei L, et al. YTHDF3 modulates hematopoietic stem cells by recognizing RNA m(6)A modification on Ccnd1. Haematologica. 2022; 107(10): 2381-2394.

[244]

Yin R, Chang J, Li Y, et al. Differential m(6)A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell. 2022; 29(1): 149-159. e7.

[245]

Li X, Ma S, Deng Y, Yi P, Yu J. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022; 21(1): 76.

[246]

Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell. 2021; 81(5): 922-939. e9.

[247]

Lee H, Bao S, Qian Y, et al. Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation. Nat Cell Biol. 2019; 21(6): 700-709.

[248]

Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021; 593(7860): 597-601.

[249]

Li M, Ye J, Xia Y, et al. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia. 2022; 36(11): 2586-2595.

[250]

Sang W, Xue S, Jiang Y, et al. METTL3 involves the progression of osteoarthritis probably by affecting ECM degradation and regulating the inflammatory response. Life Sci. 2021; 278: 119528.

[251]

Hu Y, Lei L, Jiang L, et al. LncRNA UCA1 promotes keratinocyte-driven inflammation via suppressing METTL14 and activating the HIF-1α/NF-κB axis in psoriasis. Cell Death Dis. 2023; 14(4): 279.

[252]

Li J, Wu Y, Wang M, et al. MicroRNA-1306-5p regulates the METTL14-guided m6A methylation to repress acute myeloid leukemia. Comput Math Methods Med. 2022; 2022: 5787808.

[253]

Wang CQ, Tang CH, Wang Y, et al. Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis. Sci Rep. 2022; 12(1): 1023.

[254]

Deng P, Yuan Q, Cheng Y, et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell. 2021; 28(6): 1057-1073. e7.

[255]

Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017; 31(1): 127-141.

[256]

Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020; 38(1): 79-96. e11.

[257]

Huang J, Sun M, Tao Y, et al. Cytoplasmic expression of TP53INP2 modulated by demethylase FTO and mutant NPM1 promotes autophagy in leukemia cells. Int J Mol Sci. 2023; 24(2): 1624.

[258]

Wang J, Li Y, Wang P, et al. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell. 2020; 27(1): 81-97. e8.

[259]

Shen C, Sheng Y, Zhu AC, et al. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 2020; 27(1): 64-80. e9.

[260]

Hong YG, Yang Z, Chen Y, et al. The RNA m6A reader YTHDF1 is required for acute myeloid leukemia progression. Cancer Res. 2023; 83(6): 845-860.

[261]

Chen Z, Shao YL, Wang LL, et al. YTHDF2 is a potential target of AML1/ETO-HIF1α loop-mediated cell proliferation in t(8;21) AML. Oncogene. 2021; 40(22): 3786-3798.

[262]

Dou X, Xiao Y, Shen C, et al. RBFOX2 recognizes N(6)-methyladenosine to suppress transcription and block myeloid leukaemia differentiation. Nat Cell Biol. 2023; 25(9): 1359-1368.

[263]

Weng H, Huang F, Yu Z, et al. The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022; 40(12): 1566-1582. e10.

[264]

Cheng Y, Gao Z, Zhang T, et al. Decoding m(6)A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance. Cell Stem Cell. 2023; 30(1): 69-85. e7.

[265]

Zhang N, Shen Y, Li H, et al. The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability. Exp Mol Med. 2022; 54(2): 194-205.

[266]

Zhao Y, Zhou Y, Qian Y, et al. m(6)A-dependent upregulation of DDX21 by super-enhancer-driven IGF2BP2 and IGF2BP3 facilitates progression of acute myeloid leukaemia. Clin Transl Med. 2024; 14(4): e1628.

[267]

Wen D, Xiao H, Gao Y, Zeng H, Deng J. N6-methyladenosine-modified SENP1, identified by IGF2BP3, is a novel molecular marker in acute myeloid leukemia and aggravates progression by activating AKT signal via de-SUMOylating HDAC2. Mol Cancer. 2024; 23(1): 116.

[268]

Fan J, Zhuang M, Fan W, Hou M. RNA N6-methyladenosine reader IGF2BP3 promotes acute myeloid leukemia progression by controlling stabilization of EPOR mRNA. PeerJ. 2023; 11: e15706.

[269]

Nie ZY, Yang L, Liu XJ, et al. Morin Inhibits proliferation and induces apoptosis by modulating the miR-188-5p/PTEN/AKT regulatory pathway in CML cells. Mol Cancer Ther. 2019; 18(12): 2296-2307.

[270]

Lai X, Wei J, Gu XZ, et al. Dysregulation of LINC00470 and METTL3 promotes chemoresistance and suppresses autophagy of chronic myelocytic leukaemia cells. J Cell Mol Med. 2021; 25(9): 4248-4259.

[271]

Guo S, Zhao C, Fang L, et al. The m(6)A methyltransferase WTAP plays a key role in the development of diffuse large B-cell lymphoma via regulating the m(6)A modification of catenin beta 1. Ann Transl Med. 2022; 10(14): 779.

[272]

Kuai Y, Gong X, Ding L, et al. Wilms’ tumor 1-associating protein plays an aggressive role in diffuse large B-cell lymphoma and forms a complex with BCL6 via Hsp90. Cell Commun Signal. 2018; 16(1): 50.

[273]

Han H, Fan G, Song S, et al. piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood. 2021; 137(12): 1603-1614.

[274]

Jiang F, Tang X, Tang C, et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol. 2021; 14(1): 54.

[275]

Jiang L, Zhang Y, Qian J, et al. The m(6)A methyltransferase METTL14 promotes cell proliferation via SETBP1-mediated activation of PI3K-AKT signaling pathway in myelodysplastic neoplasms. Leukemia. 2024; 38(10): 2246-2258.

[276]

Cieśla M, Ngoc PCT, Muthukumar S, et al. m(6)A-driven SF3B1 translation control steers splicing to direct genome integrity and leukemogenesis. Mol Cell. 2023; 83(7): 1165-1179. e11.

[277]

Hwang WC, Park K, Park S, et al. Impaired binding affinity of YTHDC1 with METTL3/METTL14 results in R-loop accumulation in myelodysplastic neoplasms with DDX41 mutation. Leukemia. 2024; 38(6): 1353-1364.

[278]

Zhao P, Xia L, Chen D, et al. METTL1 mediated tRNA m(7)G modification promotes leukaemogenesis of AML via tRNA regulated translational control. Exp Hematol Oncol. 2024; 13(1): 8.

[279]

Cheng JX, Chen L, Li Y, et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun. 2018; 9(1): 1163.

[280]

Ma HL, Bizet M, Soares Da Costa C, et al. SRSF2 plays an unexpected role as reader of m(5)C on mRNA, linking epitranscriptomics to cancer. Mol Cell. 2023; 83(23): 4239-4254. e10.

[281]

Wang X, Wang M, Dai X, et al. RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. Fundam Res. 2022; 2(1): 48-55.

[282]

Liu Y, Yang Y, Wu R, et al. mRNA m(5)C inhibits adipogenesis and promotes myogenesis by respectively facilitating YBX2 and SMO mRNA export in ALYREF-m(5)C manner. Cell Mol Life Sci. 2022; 79(9): 481.

[283]

Liang P, Hu R, Liu Z, Miao M, Jiang H, Li C. NAT10 upregulation indicates a poor prognosis in acute myeloid leukemia. Curr Probl Cancer. 2020; 44(2): 100491.

[284]

Zi J, Han Q, Gu S, et al. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells. Front Oncol. 2020; 10: 598107.

[285]

Wang P, Wang J, Yao S, et al. Deubiquitinase USP9X stabilizes RNA m(6)A demethylase ALKBH5 and promotes acute myeloid leukemia cell survival. J Biol Chem. 2023; 299(8): 105055.

[286]

Shao YL, Li YQ, Li MY, et al. HIF1α-mediated transactivation of WTAP promotes AML cell proliferation via m(6)A-dependent stabilization of KDM4B mRNA. Leukemia. 2023; 37(6): 1254-1267.

[287]

Rodrigues A, Costa RGA, Silva SLR, Dias I, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol. 2021; 160: 103277.

[288]

Sakoda T, Kikushige Y, Miyamoto T, et al. TIM-3 signaling hijacks the canonical Wnt/β-catenin pathway to maintain cancer stemness in acute myeloid leukemia. Blood Adv. 2023; 7(10): 2053-2065.

[289]

Lin LC, Yeh CT, Kuo CC, et al. Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/β-catenin function. J Agric Food Chem. 2012; 60(28): 7031-7039.

[290]

Perry JM, Tao F, Roy A, et al. Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol. 2020; 22(6): 689-700.

[291]

Kayser S, Levis MJ. Updates on targeted therapies for acute myeloid leukaemia. Br J Haematol. 2022; 196(2): 316-328.

[292]

Keeler RF. Cyclopamine and related steroidal alkaloid teratogens: their occurrence, structural relationship, and biologic effects. Lipids. 1978; 13(10): 708-715.

[293]

Flores-Lopez G, Moreno-Lorenzana D, Ayala-Sanchez M, et al. Parthenolide and DMAPT induce cell death in primitive CML cells through reactive oxygen species. J Cell Mol Med. 2018; 22(10): 4899-4912.

[294]

Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today. 2013; 18(17-18): 894-905.

[295]

Azzam SK, Alsafar H, Sajini AA. FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int J Mol Sci. 2022; 23(7): 3800.

[296]

Yanagi Y, Watanabe T, Hara Y, Sato Y, Kimura H, Murata T. EBV exploits RNA m(6)A modification to promote cell survival and progeny virus production during lytic cycle. Front Microbiol. 2022; 13: 870816.

[297]

Kim DS, Endo A, Fang FG, et al. E7766, a macrocycle-bridged stimulator of interferon genes (STING) agonist with potent pan-genotypic activity. ChemMedChem. 2021; 16(11): 1740-1743.

[298]

Lee JH, Choi N, Kim S, Jin MS, Shen H, Kim YC. Eltrombopag as an allosteric inhibitor of the METTL3-14 complex affecting the m(6)A methylation of RNA in acute myeloid leukemia cells. Pharmaceuticals (Basel). 2022; 15(4): 440.

[299]

Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019; 35(4): 677-691. e10.

[300]

Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018; 172(1-2): 90-105. e23.

[301]

Chen A, Zhang VX, Zhang Q, et al. Targeting the oncogenic m6A demethylase FTO suppresses tumourigenesis and potentiates immune response in hepatocellular carcinoma. Gut. 2024.

[302]

Prakash M, Itoh Y, Fujiwara Y, et al. Identification of potent and selective inhibitors of fat mass obesity-associated protein using a fragment-merging approach. J Med Chem. 2021; 64(21): 15810-15824.

[303]

Cao K, Du Y, Bao X, et al. Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine FTO demethylase as a strategy against leukemic stem cells. Small. 2022; 18(13): e2106558.

[304]

Lai GQ, Li Y, Zhu H, et al. A covalent compound selectively inhibits RNA demethylase ALKBH5 rather than FTO. RSC Chem Biol. 2024; 5(4): 335-343.

[305]

Wang YZ, Li HY, Zhang Y, et al. Discovery of pyrazolo[1, 5-a]pyrimidine derivative as a novel and selective ALKBH5 inhibitor for the treatment of AML. J Med Chem. 2023; 66(23): 15944-15959.

[306]

Dixit D, Prager BC, Gimple RC, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 2021; 11(2): 480-499.

[307]

Feng P, Chen D, Wang X, et al. Inhibition of the m(6)A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 2022; 36(9): 2180-2188.

[308]

Li Z, Feng Y, Han H, et al. A stapled peptide inhibitor targeting the binding interface of N6-adenosine-methyltransferase subunits METTL3 and METTL14 for cancer therapy. Angew Chem Int Ed Engl. 2024; 63(24): e202402611.

[309]

Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015; 43(1): 373-384.

[310]

Wang L, Dou X, Chen S, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023; 41(7): 1294-1308. e8.

[311]

Wang R, Xu P, Chang LL, Zhang SZ, Zhu HH. Targeted therapy in NPM1-mutated AML: knowns and unknowns. Front Oncol. 2022; 12: 972606.

[312]

Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022; 21(3): 181-200.

[313]

Xiao YL, Liu S, Ge R, et al. Transcriptome-wide profiling and quantification of N(6)-methyladenosine by enzyme-assisted adenosine deamination. Nat Biotechnol. 2023; 41(7): 993-1003.

[314]

Liu C, Sun H, Yi Y, et al. Absolute quantification of single-base m(6)A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol. 2023; 41(3): 355-366.

[315]

Ma S, Sun B, Duan S, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8(+) T cells. Nat Immunol. 2023; 24(2): 255-266.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/