An inflammatory cytokine signature predicts IgA nephropathy severity and progression

Lei Chen , Xizhao Chen , Guangyan Cai , Hongli Jiang , Xiangmei Chen , Min Zhang

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e783

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e783 DOI: 10.1002/mco2.783
ORIGINAL ARTICLE

An inflammatory cytokine signature predicts IgA nephropathy severity and progression

Author information +
History +
PDF

Abstract

IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis, resulting in end-stage renal disease and increased mortality rates. Prognostic biomarkers reflecting molecular mechanisms for effective IgAN management are urgently needed. Analysis of kidney single-cell transcriptomic sequencing data demonstrated that IgAN expressed high-expression levels of inflammatory cytokines TNFSF10, TNFSF12, CCL2, CXCL1, and CXCL12 than healthy controls (HCs). We also measured the urine proteins in 120 IgAN (57 stable and 63 progressive) and 32 HCs using the proximity extension assay (PEA), and the multivariable and least absolute shrinkage and selection operator (LASSO) logistic regression analysis both revealed that CXCL12, MCP1 were the prognostic significant variables to predict IgAN progression severity. These two proteins exhibited negative correlation with the estimated glomerular filtration rate (eGFR) and patients with higher expression levels of these two proteins had a higher probability to have poorer renal outcome. We further developed a risk index model utilizing CXCL12, MCP1, and baseline clinical indicators, which achieved an impressive area under the curve (AUC) of 0.896 for prediction of IgAN progression severity. Our study highlights the significance of the inflammatory protein biomarkers for noninvasive prediction of IgAN severity and progression, offering valuable insights for clinical management.

Keywords

IgA nephropathy / Olink Proteomics / prognosis biomarkers / single-cell sequencing

Cite this article

Download citation ▾
Lei Chen, Xizhao Chen, Guangyan Cai, Hongli Jiang, Xiangmei Chen, Min Zhang. An inflammatory cytokine signature predicts IgA nephropathy severity and progression. MedComm, 2024, 5(11): e783 DOI:10.1002/mco2.783

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai GY, Chen XM. Immunoglobulin A nephropathy in China: progress and challenges. Am J Nephrol. 2009; 30(3): 268-273.

[2]

Roberts ISD. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014; 10(8): 445-454.

[3]

Barratt J, Tang SCW. Treatment of IgA nephropathy: evolution over half a century. Semin Nephrol. 2018; 38(5): 531-540.

[4]

Zheng Y, Lu P, Deng Y, et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy. Cell Rep. 2020; 33(12): 108525.

[5]

Tamouza H, Chemouny JM, Raskova Kafkova L, et al. The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int. 2012; 82(12): 1284-1296.

[6]

Floege J, Daha MR. IgA nephropathy: new insights into the role of complement. Kidney Int. 2018; 94(1): 16-18.

[7]

Novak J, Rizk D, Takahashi K, et al. New insights into the pathogenesis of IgA nephropathy. Kidney Dis (Basel, Switzerland). 2015; 1(1): 8-18.

[8]

Lai KN, Tang SC, Schena FP, et al. IgA nephropathy. Nat Rev Dis Primers. 2016; 2: 16001.

[9]

Lai KN. Pathogenesis of IgA nephropathy. Nat Rev Nephrol. 2012; 8(5): 275-283.

[10]

Reich HN, Troyanov S, Scholey JW, Cattran DC. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007; 18(12): 3177-3183.

[11]

Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis. 2012; 59(6): 865-873.

[12]

Kant S, Kronbichler A, Sharma P, Geetha D. Advances in understanding of pathogenesis and treatment of immune-mediated kidney disease: a review. Am J Kidney Dis. 2022; 79(4): 582-600.

[13]

Zhao W, Feng S, Wang Y, et al. Elevated urinary IL-6 predicts the progression of IgA nephropathy. Kidney Int Rep. 2023; 8(3): 519-530.

[14]

Yang X, Ou J, Zhang H, et al. Urinary matrix metalloproteinase 7 and prediction of IgA nephropathy progression. Am J Kidney Dis. 2020; 75(3): 384-393.

[15]

Zhao YF, Zhu L, Liu LJ, Shi SF, Lv JC, Zhang H. Measures of urinary protein and albumin in the prediction of progression of IgA nephropathy. Clin J Am Soc Nephrol: CJASN. 2016; 11(6): 947-955.

[16]

Yano N, Endoh M, Nomoto Y, Sakai H, Fadden K, Rifai A. Phenotypic characterization of cytokine expression in patients with IgA nephropathy. J Clin Immunol. 1997; 17(5): 396-403.

[17]

Rauta V, Teppo AM, Törnroth T, Honkanen E, Grönhagen-Riska C. Lower urinary-interleukin-1 receptor-antagonist excretion in IgA nephropathy than in Henoch-Schönlein nephritis. Nephrol Dial Transplant. 2003; 18(9): 1785-1791.

[18]

Chen X, Wang T, Chen L, et al. Cross-species single-cell analysis uncovers the immunopathological mechanisms associated with IgA nephropathy progression. JCI insight. 2024; 9(9): e173651.

[19]

Wang W, Zhang M, Ren X, et al. Single-cell dissection of cellular and molecular features underlying mesenchymal stem cell therapy in ischemic acute kidney injury. Mol Ther. 2023; 31(10): 3067-3083.

[20]

Liu C, Zhang M, Yan X, et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. Sci Adv. 2023; 9(4): eadd8977.

[21]

Zhang M, Wu L, Deng Y, et al. Single cell dissection of epithelial-immune cellular interplay in acute kidney injury microenvironment. Front Immunol. 2022; 13: 857025.

[22]

Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut. 2021; 70(3): 464-475.

[23]

Zhang M, Yang H, Wan L, et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 2020; 73(5): 1118-1130.

[24]

Lai W, Huang R, Wang B, et al. Novel aspect of neprilysin in kidney fibrosis via ACSL4-mediated ferroptosis of tubular epithelial cells. MedComm. 2023; 4(4): e330.

[25]

Wik L, Nordberg N, Broberg J, et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol Cell Proteomics. 2021; 20: 100168.

[26]

Zhang P, Hu J, Park JS, et al. Highly sensitive serum protein analysis using magnetic bead-based proximity extension assay. Anal Chem. 2022; 94(36): 12481-12489.

[27]

Doke T, Abedini A, Aldridge DL, et al. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nat Immunol. 2022; 23(6): 947-959.

[28]

Wu X, Qian L, Zhao H, et al. CXCL12/CXCR4: an amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev. 2023; 83: 101809.

[29]

Devarapu SK, Kumar Vr S, Rupanagudi KV, et al. Dual blockade of the pro-inflammatory chemokine CCL2 and the homeostatic chemokine CXCL12 is as effective as high dose cyclophosphamide in murine proliferative lupus nephritis. Clin Immunol (Orlando, Fla). 2016; 169: 139-147.

[30]

Viedt C, Dechend R, Fei J, Hänsch GM, Kreuzer J, Orth SR. MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J Am Soc Nephrol. 2002; 13(6): 1534-1547.

[31]

Bienaimé F, Muorah M, Metzger M, et al. Combining robust urine biomarkers to assess chronic kidney disease progression. EBioMedicine. 2023; 93: 104635.

[32]

Torres DD, Rossini M, Manno C, et al. The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int. 2008; 73(3): 327-333.

[33]

Darisipudi MN, Kulkarni OP, Sayyed SG, et al. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol. 2011; 179(1): 116-124.

[34]

Schwartz N, Michaelson JS, Putterman C. Lipocalin-2, TWEAK, and other cytokines as urinary biomarkers for lupus nephritis. Ann NY Acad Sci. 2007; 1109: 265-274.

[35]

Sanz AB, Izquierdo MC, Sanchez-Niño MD, et al. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant. 2014; 29(1): i54-i62.

[36]

Poveda J, Tabara LC, Fernandez-Fernandez B, et al. TWEAK/Fn14 and non-canonical NF-kappaB signaling in kidney disease. Front Immunol. 2013; 4: 447.

[37]

Xia Y, Campbell SR, Broder A, et al. Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin Immunol (Orlando, Fla). 2012; 145(2): 108-121.

[38]

Li Z, Wang H, Zhu J, et al. Inhibition of TWEAK/Tnfrsf12a axis protects against acute liver failure by suppressing RIPK1-dependent apoptosis. Cell Death Discov. 2022; 8(1): 328.

[39]

Ramachandran P, Dobie R, Wilson-Kanamori JR, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019; 575(7783): 512-518.

[40]

Der E, Suryawanshi H, Morozov P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol. 2019; 20(7): 915-927.

[41]

Tang C, Chen P, Si FL, et al. Time-varying proteinuria and progression of IgA nephropathy: a cohort study. Am J Kidney Dis. 2024; 84(2): 170-178.

[42]

Floege J, Feehally J. IgA nephropathy: recent developments. J Am Soc Nephrol. 2000; 11(12): 2395-2403.

[43]

Floege J, Barbour SJ, Cattran DC, et al. Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2019; 95(2): 268-280.

[44]

Tang R, Meng T, Lin W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy. Front Immunol. 2021; 12: 645988.

[45]

Muto Y, Wilson PC, Ledru N, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021; 12(1): 2190.

[46]

Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019; 177(7): 1888-1902.e21.

[47]

McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019; 8(4): 329-337.e4.

[48]

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinf. 2013; 14(1): 7.

[49]

Liu P, Lassén E, Nair V, et al. Transcriptomic and proteomic profiling provides insight into mesangial cell function in IgA nephropathy. J Am Soc Nephrol. 2017; 28(10): 2961-2972.

[50]

Chen X, Li M, Zhu S, et al. Proteomic profiling of IgA nephropathy reveals distinct molecular prognostic subtypes. iScience. 2023; 26(3): 105961.

[51]

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016; 32(18): 2847-2849.

[52]

Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019; 10(1): 1523.

RIGHTS & PERMISSIONS

2024 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/