Targeting esophageal carcinoma: molecular mechanisms and clinical studies

Wenjing Wang , Lisha Ye , Huihui Li , Weimin Mao , Xiaoling Xu

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e782

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e782 DOI: 10.1002/mco2.782
REVIEW

Targeting esophageal carcinoma: molecular mechanisms and clinical studies

Author information +
History +
PDF

Abstract

Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody–drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC’s molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.

Keywords

combination therapies / esophageal cancer / molecular pathogenesis / resistance mechanisms / target therapy

Cite this article

Download citation ▾
Wenjing Wang, Lisha Ye, Huihui Li, Weimin Mao, Xiaoling Xu. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm, 2024, 5(11): e782 DOI:10.1002/mco2.782

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[2]

Smyth EC, Lagergren J, Fitzgerald RC, et al. Oesophageal cancer. Nat Rev Dis Primers. 2017; 3: 17048.

[3]

Taziki MH, Rajaee S, Behnampour N, Tadrisee M, Mansourian AR. Esophageal cancer: 5-year survival rate at south-east of Caspian sea of northern Iran. J Cancer Res Ther. 2011; 7(2): 135-137.

[4]

Lin DC, Wang MR, Koeffler HP. Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients. Gastroenterology. 2018; 154(2): 374-389.

[5]

Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014; 509(7498): 91-95.

[6]

Liu Z, Zhao Y, Kong P, et al. Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell. 2023; 41(1): 181-195. e9.

[7]

Wiseman EF, Chen X, Han N, et al. Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma. Mol Cancer. 2015; 14: 69.

[8]

Kagamu H, Yamasaki S, Kitano S, et al. Single-cell analysis reveals a CD4+ T-cell cluster that correlates with PD-1 blockade efficacy. Cancer Res. 2022; 82(24): 4641-4653.

[9]

Ziman B, Yang Q, Zheng Y, et al. Epigenomic analyses identify FOXM1 as a key regulator of anti-tumor immune response in esophageal adenocarcinoma. Cell Death Dis. 2024; 15(2): 152.

[10]

Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol. 1997; 8(12): 1197-1206.

[11]

Bang J, Jun M, Lee S, Moon H, Ro SW. Targeting EGFR/PI3K/AKT/mTOR signaling in hepatocellular carcinoma. Pharmaceutics. 2023; 15(8): 2130.

[12]

Erdogan F, Radu TB, Orlova A, et al. JAK-STAT core cancer pathway: an integrative cancer interactome analysis. J Cell Mol Med. 2022; 26(7): 2049-2062.

[13]

Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007; 26(22): 3291-3310.

[14]

Wang L, Zhang G, Qin L, et al. Anti-EGFR binding nanobody delivery system to improve the diagnosis and treatment of solid tumours. Recent Pat Anticancer Drug Discov. 2020; 15(3): 200-211.

[15]

Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-dependent extracellular matrix protein interactions might light a candle in cell behavior of non-small cell lung cancer. Front Oncol. 2021; 11: 766659.

[16]

Jiang G, Miao Y, Wang Z, Zhang Q, Zhou P, Zhang F. Prognostic significance of epidermal growth factor receptor and programmed cell death-ligand 1 co-expression in esophageal squamous cell carcinoma. Aging (Albany NY). 2023; 15(4): 1107-1129.

[17]

Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007; 26(45): 6469-6487.

[18]

Subasinghe D, Acott N, Kumarasinghe MP. A survival guide to HER2 testing in gastric/gastroesophageal junction carcinoma. Gastrointest Endosc. 2019; 90(1): 44-54.

[19]

Schettini F, Prat A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast. 2021; 59: 339-350.

[20]

Nowak JA. HER2 in colorectal carcinoma: are we there yet?. Surg Pathol Clin. 2020; 13(3): 485-502.

[21]

Miricescu D, Totan A, Stanescu S II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020; 22(1): 173.

[22]

Scerri J, Scerri C, Schafer-Ruoff F, Fink S, Templin M, Grech G. PKC-mediated phosphorylation and activation of the MEK/ERK pathway as a mechanism of acquired trastuzumab resistance in HER2-positive breast cancer. Front Endocrinol (Lausanne). 2022; 13: 1010092.

[23]

Vaddavalli PL, Schumacher B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet. 2022; 38(6): 598-612.

[24]

Voskarides K, Giannopoulou N. The role of TP53 in adaptation and evolution. Cells. 2023; 12(3): 512.

[25]

Song H, Hollstein M, Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 2007; 9(5): 573-580.

[26]

Liu DP, Song H, Xu Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene. 2010; 29(7): 949-956.

[27]

Ko KP, Huang Y, Zhang S, et al. Key genetic determinants driving esophageal squamous cell carcinoma initiation and immune evasion. Gastroenterology. 2023; 165(3): 613-628. e20.

[28]

Pascale RM, Simile MM, De Miglio MR, et al. Cell cycle deregulation in liver lesions of rats with and without genetic predisposition to hepatocarcinogenesis. Hepatology. 2002; 35(6): 1341-1350.

[29]

Wang W, Shao F, Yang X, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N(6)-methyladenosine-dependent YTHDF binding. Nat Commun. 2021; 12(1): 3803.

[30]

van Neerven SM, de Groot NE, Nijman LE, et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature. 2021; 594(7863): 436-441.

[31]

Abedi-Ardekani B, Hainaut P. Cancers of the upper gastro-intestinal tract: a review of somatic mutation distributions. Arch Iran Med. 2014; 17(4): 286-292.

[32]

Kawano H, Saeki H, Kitao H, et al. Chromosomal instability associated with global DNA hypomethylation is associated with the initiation and progression of esophageal squamous cell carcinoma. Ann Surg Oncol. 2014; 21(4): S696-S702. Suppl.

[33]

Du Z, Ma K, Sun X, et al. Methylation of RASSF1A gene promoter and the correlation with DNMT1 expression that may contribute to esophageal squamous cell carcinoma. World J Surg Oncol. 2015; 13: 141.

[34]

Chen H, Qin Q, Xu Z, et al. DNA methylation data-based prognosis-subtype distinctions in patients with esophageal carcinoma by bioinformatic studies. J Cell Physiol. 2021; 236(3): 2126-2138.

[35]

Wang H, DeFina SM, Bajpai M, Yan Q, Yang L, Zhou Z. DNA methylation markers in esophageal cancer: an emerging tool for cancer surveillance and treatment. Am J Cancer Res. 2021; 11(11): 5644-5658.

[36]

Millan-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications—cause and consequence of genome function. Nat Rev Genet. 2022; 23(9): 563-580.

[37]

Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022; 13(12): 877-919.

[38]

Li S, Yuan L, Xu ZY, et al. Integrative proteomic characterization of adenocarcinoma of esophagogastric junction. Nat Commun. 2023; 14(1): 778.

[39]

He Y, Zheng CC, Yang J, et al. Lysine butyrylation of HSP90 regulated by KAT8 and HDAC11 confers chemoresistance. Cell Discov. 2023; 9(1): 74.

[40]

Zhou J, Wu Z, Zhang Z, et al. Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut. 2022; 71(4): 665-675.

[41]

Morgan S, Grandis JR. ErbB receptors in the biology and pathology of the aerodigestive tract. Exp Cell Res. 2009; 315(4): 572-582.

[42]

Halder S, Basu S, Lall SP, Ganti AK, Batra SK, Seshacharyulu P. Targeting the EGFR signaling pathway in cancer therapy: what’s new in 2023?. Expert Opin Ther Targets. 2023; 27(4-5): 305-324.

[43]

Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022; 19(8): 499-514.

[44]

Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020; 11(9): 797.

[45]

Luo Q, Du R, Liu W, Huang G, Dong Z, Li X. PI3K/Akt/mTOR signaling pathway: role in esophageal squamous cell carcinoma, regulatory mechanisms and opportunities for targeted therapy. Front Oncol. 2022; 12: 852383.

[46]

Moghbeli M, Abbaszadegan MR, Golmakani E, Forghanifard MM. Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. J Cell Commun Signal. 2016; 10(2): 129-135.

[47]

Li L, Sun J, Liu N, et al. Clinical outcome-related cancer pathways and mutational signatures in patients with unresectable esophageal squamous cell carcinoma treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2023; 115(2): 382-394.

[48]

Li Q, Luo H, Dai FQ, et al. SAMD9 promotes postoperative recurrence of esophageal squamous cell carcinoma by stimulating MYH9-mediated GSK3beta/beta-catenin signaling. Adv Sci (Weinh). 2023; 10(11): e2203573.

[49]

Duan X, Chen Y, Zhang K, et al. PHGDH promotes esophageal squamous cell carcinoma progression via Wnt/beta-catenin pathway. Cell Signal. 2023; 109: 110736.

[50]

Song P, Gao Z, Bao Y, et al. Wnt/beta-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024; 17(1): 46.

[51]

Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020; 62: 166-181.

[52]

Ping Q, Yan R, Cheng X, et al. Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther. 2021; 28(9): 984-999.

[53]

Wang Z, Zhang M, Liu L, et al. Prognostic and immunological role of cancer-associated fibroblasts-derived exosomal protein in esophageal squamous cell carcinoma. Int Immunopharmacol. 2023; 124(A):110837. Pt.

[54]

Huang TX, Tan XY, Huang HS, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 2022; 71(2): 333-344.

[55]

Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 2019; 18(1): 70.

[56]

Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021; 20(1): 131.

[57]

Gao Y, Sun Z, Gu J, et al. Cancer-Associated Fibroblasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Front Oncol. 2021; 11: 748465.

[58]

Milosevic V, Ostman A. Interactions between cancer-associated fibroblasts and T-cells: functional crosstalk with targeting and biomarker potential. Ups J Med Sci. 2024; 129: e10710.

[59]

Gao Y, Sun Z, Gu J, et al. Cancer-associated fibroblasts promote the upregulation of PD-L1 expression through akt phosphorylation in colorectal cancer. Front Oncol. 2021; 11: 748465.

[60]

Zhang X, Peng L, Luo Y, et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun. 2021; 12(1): 5291.

[61]

Chen Y, Zhu S, Liu T, et al. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell. 2023; 41(5): 903-918. e8.

[62]

Mabeta P, Steenkamp V. The VEGF/VEGFR axis revisited: implications for cancer therapy. Int J Mol Sci. 2022; 23(24): 15585.

[63]

Folkman J. Angiogenesis. Annu Rev Med. 2006; 57: 1-18.

[64]

Tang K, Toyozumi T, Murakami K, et al. HIF-1alpha stimulates the progression of oesophageal squamous cell carcinoma by activating the Wnt/beta-catenin signalling pathway. Br J Cancer. 2022; 127(3): 474-487.

[65]

Hu X, Lin J, Jiang M, et al. HIF-1alpha promotes the metastasis of esophageal squamous cell carcinoma by targeting SP1. J Cancer. 2020; 11(1): 229-240.

[66]

Yuan H, Zhao Z, Xu J, et al. Hypoxia-induced TMTC3 expression in esophageal squamous cell carcinoma potentiates tumor angiogenesis through Rho GTPase/STAT3/VEGFA pathway. J Exp Clin Cancer Res. 2023; 42(1): 249.

[67]

Li Y, Fu L, Li JB, et al. Increased expression of EIF5A2, via hypoxia or gene amplification, contributes to metastasis and angiogenesis of esophageal squamous cell carcinoma. Gastroenterology. 2014; 146(7): 1701-1713. e9.

[68]

Mao Y, Wang J, Wang Y, Fu Z, Dong L, Liu J. Hypoxia induced exosomal Circ-ZNF609 promotes pre-metastatic niche formation and cancer progression via miR-150-5p/VEGFA and HuR/ZO-1 axes in esophageal squamous cell carcinoma. Cell Death Discov. 2024; 10(1): 133.

[69]

Leng C, Li Y, Qin J, et al. Relationship between expression of PD-L1 and PD-L2 on esophageal squamous cell carcinoma and the antitumor effects of CD8(+) T cells. Oncol Rep. 2016; 35(2): 699-708.

[70]

Doki Y, Ajani JA, Kato K, et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N Engl J Med. 2022; 386(5): 449-462.

[71]

Wagener-Ryczek S, Schoemmel M, Kraemer M, et al. Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma. Cancer Immunol Immunother. 2020; 69(4): 523-533.

[72]

Yao J, Tan X, Sha Y, Chen Y, Chen R, Shi D. An updated review of immunotherapy in esophageal cancer: pD-L1 footprint. Cent Eur J Immunol. 2024; 49(1): 77-90.

[73]

Mahmoudian RA, Mozhgani S, Abbaszadegan MR, Mokhlessi L, Montazer M, Gholamin M. Correlation between the immune checkpoints and EMT genes proposes potential prognostic and therapeutic targets in ESCC. J Mol Histol. 2021; 52(3): 597-609.

[74]

Derks S, Nason KS, Liao X, et al. Epithelial PD-L2 expression marks Barrett’s esophagus and esophageal adenocarcinoma. Cancer Immunol Res. 2015; 3(10): 1123-1129.

[75]

Loeser H, Kraemer M, Gebauer F, et al. The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma. Oncoimmunology. 2019; 8(5): e1581546.

[76]

Hirschhorn D, Budhu S, Kraehenbuehl L, et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell. 2023; 186(7): 1432-1447. e17.

[77]

Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017; 276(1): 97-111.

[78]

Zhang XF, Pan K, Weng DS, et al. Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma: implications for prognosis. Oncotarget. 2016; 7(18): 26670-26679.

[79]

Huang TX, Fu L. The immune landscape of esophageal cancer. Cancer Commun (Lond). 2019; 39(1): 79.

[80]

Baba Y, Nomoto D, Okadome K, et al. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 2020; 111(9): 3132-3141.

[81]

Higashino N, Koma YI, Hosono M, et al. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Invest. 2019; 99(6): 777-792.

[82]

Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer. 2020; 19(1): 41.

[83]

Wu Q, Zhang W, Wang Y, et al. MAGE-C3 promotes cancer metastasis by inducing epithelial-mesenchymal transition and immunosuppression in esophageal squamous cell carcinoma. Cancer Commun (Lond). 2021; 41(12): 1354-1372.

[84]

Zhou X, Li Y, Wang W, et al. Regulation of Hippo/YAP signaling and Esophageal Squamous Carcinoma progression by an E3 ubiquitin ligase PARK2. Theranostics. 2020; 10(21): 9443-9457.

[85]

Zhou X, Yan Z, Hou J, et al. The Hippo-YAP signaling pathway drives CD24-mediated immune evasion in esophageal squamous cell carcinoma via macrophage phagocytosis. Oncogene. 2024; 43(7): 495-510.

[86]

Guo D, Sheng K, Zhang Q, et al. Single-cell transcriptomic analysis reveals the landscape of epithelial-mesenchymal transition molecular heterogeneity in esophageal squamous cell carcinoma. Cancer Lett. 2024; 587: 216723.

[87]

Gao J, Tian L, Sun Y, et al. PURalpha mediates epithelial-mesenchymal transition to promote esophageal squamous cell carcinoma progression by regulating Snail2. Cancer Lett. 2021; 498: 98-110.

[88]

Tang Q, Lento A, Suzuki K, et al. Rab11-FIP1 mediates epithelial-mesenchymal transition and invasion in esophageal cancer. EMBO Rep. 2021; 22(2): e48351.

[89]

Shamir ER, Pappalardo E, Jorgens DM, et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol. 2014; 204(5): 839-856.

[90]

Wu N, Jiang M, Liu H, et al. LINC00941 promotes CRC metastasis through preventing SMAD4 protein degradation and activating the TGF-beta/SMAD2/3 signaling pathway. Cell Death Differ. 2021; 28(1): 219-232.

[91]

Hryniewicz-Jankowska A, Wierzbicki J, Tabola R, Stach K, Sossey-Alaoui K, Augoff K. The effect of neddylation inhibition on inflammation-induced MMP9 gene expression in esophageal squamous cell carcinoma. Int J Mol Sci. 2021; 22(4): 1716.

[92]

Kim JH, Shin WS, Lee SR, Kim S, Choi SY, Lee ST. Anti-PTK7 monoclonal antibodies exhibit anti-tumor activity at the cellular level and in mouse xenograft models of esophageal squamous cell carcinoma. Int J Mol Sci. 2022; 23(20): 12195.

[93]

Xia Q, Du Z, Chen M, et al. A protein complex of LCN2, LOXL2 and MMP9 facilitates tumour metastasis in oesophageal cancer. Mol Oncol. 2023; 17(11): 2451-2471.

[94]

Hu HF, Xu WW, Zhang WX, et al. Identification of miR-515-3p and its targets, vimentin and MMP3, as a key regulatory mechanism in esophageal cancer metastasis: functional and clinical significance. Signal Transduct Target Ther. 2020; 5(1): 271.

[95]

Mahmoudian RA, Gharaie ML, Abbaszadegan MR, et al. Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma. Mol Cell Biochem. 2021; 476(6): 2465-2478.

[96]

Lu H, Bhat AA, Peng D, et al. APE1 upregulates MMP-14 via redox-sensitive ARF6-mediated recycling to promote cell invasion of esophageal adenocarcinoma. Cancer Res. 2019; 79(17): 4426-4438.

[97]

Moehler M, Maderer A, Thuss-Patience PC, et al. Cisplatin and 5-fluorouracil with or without epidermal growth factor receptor inhibition panitumumab for patients with non-resectable, advanced or metastatic oesophageal squamous cell cancer: a prospective, open-label, randomised phase III AIO/EORTC trial (POWER). Ann Oncol. 2020; 31(2): 228-235.

[98]

Zhang W, Yan C, Zhang T, et al. Addition of camrelizumab to docetaxel, cisplatin, and radiation therapy in patients with locally advanced esophageal squamous cell carcinoma: a phase 1b study. Oncoimmunology. 2021; 10(1): 1971418.

[99]

Jing C, Wang J, Zhu M, et al. Camrelizumab combined with apatinib and S-1 as second-line treatment for patients with advanced gastric or gastroesophageal junction adenocarcinoma: a phase 2, single-arm, prospective study. Cancer Immunol Immunother. 2022; 71(11): 2597-2608.

[100]

Meng X, Wu T, Hong Y, et al. Camrelizumab plus apatinib as second-line treatment for advanced oesophageal squamous cell carcinoma (CAP 02): a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2022; 7(3): 245-253.

[101]

Hong Y, Liu J, Lu P, et al. Feasibility and tolerability of anlotinib plus PD-1 blockades as rechallenge immunotherapy in previously treated advanced ESCC: a retrospective study. Oncologist. 2024.

[102]

Huang J, Xiao J, Fang W, et al. Anlotinib for previously treated advanced or metastatic esophageal squamous cell carcinoma: a double-blind randomized phase 2 trial. Cancer Med. 2021; 10(5): 1681-1689.

[103]

Shapira-Frommer R, Niu J, Perets R, et al. The KEYVIBE program: vibostolimab and pembrolizumab for the treatment of advanced malignancies. Future Oncol. 2024: 1-14.

[104]

Shitara K, Kawazoe A, Hirakawa A, et al. Phase 1 trial of zolbetuximab in Japanese patients with CLDN18.2+ gastric or gastroesophageal junction adenocarcinoma. Cancer Sci. 2023; 114(4): 1606-1615.

[105]

Tureci O, Sahin U, Schulze-Bergkamen H, et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: the MONO study. Ann Oncol. 2019; 30(9): 1487-1495.

[106]

Shitara K, Lordick F, Bang YJ, et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2023; 401(10389): 1655-1668.

[107]

Shah MA, Shitara K, Ajani JA, et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat Med. 2023; 29(8): 2133-2141.

[108]

Kojima T, Kato K, Hara H, et al. Phase II study of BKM120 in patients with advanced esophageal squamous cell carcinoma (EPOC1303). Esophagus. 2022; 19(4): 702-710.

[109]

Ooki A, Satoh T, Muro K, et al. A phase 1b study of andecaliximab in combination with S-1 plus platinum in Japanese patients with gastric adenocarcinoma. Sci Rep. 2022; 12(1): 11007.

[110]

Kao HF, Liao BC, Huang YL, et al. Afatinib and pembrolizumab for recurrent or metastatic head and neck squamous cell carcinoma (ALPHA Study): a phase II study with biomarker analysis. Clin Cancer Res. 2022; 28(8): 1560-1571.

[111]

Qi C, Zhang P, Liu C, et al. Safety and efficacy of CT041 in patients with refractory metastatic pancreatic cancer: a pooled analysis of two early-phase trials. J Clin Oncol. 2024; 42(21): 2565-2577.

[112]

Gao X, Ji K, Jia Y, et al. Cadonilimab with chemotherapy in HER2-negative gastric or gastroesophageal junction adenocarcinoma: the phase 1b/2 COMPASSION-04 trial. Nat Med. 2024; 30(7): 1943-1951.

[113]

Yoo C, Oh DY, Choi HJ, et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with pretreated biliary tract cancer. J Immunother Cancer. 2020; 8(1): e000564.

[114]

Sun JM, Adenis A, CE P, et al. LEAP-014: first-line lenvatinib + pembrolizumab + chemotherapy in advanced/metastatic esophageal squamous cell carcinoma. Future Oncol. 2024: 1-13.

[115]

Catenacci DV, Rosales M, Chung HC, et al. MAHOGANY: margetuximab combination in HER2+ unresectable/metastatic gastric/gastroesophageal junction adenocarcinoma. Future Oncol. 2021; 17(10): 1155-1164.

[116]

Teraishi F, Kagawa S, Watanabe T, et al. ZD1839 (Gefitinib, ‘Iressa’), an epidermal growth factor receptor-tyrosine kinase inhibitor, enhances the anti-cancer effects of TRAIL in human esophageal squamous cell carcinoma. FEBS Lett. 2005; 579(19): 4069-4075.

[117]

Janmaat ML, Gallegos-Ruiz MI, Rodriguez JA, et al. Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J Clin Oncol. 2006; 24(10): 1612-1619.

[118]

Dutton SJ, Ferry DR, Blazeby JM, et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): a phase 3, multicentre, double-blind, placebo-controlled randomised trial. Lancet Oncol. 2014; 15(8): 894-904.

[119]

Lledo G, Huguet F, Chibaudel B, et al. Chemoradiotherapy with FOLFOX plus cetuximab in locally advanced oesophageal cancer: the GERCOR phase II trial ERaFOX. Eur J Cancer. 2016; 56: 115-121.

[120]

Rades D, Bartscht T, Hunold P, et al. Radiochemotherapy with or without cetuximab for unresectable esophageal cancer: final results of a randomized phase 2 trial (LEOPARD-2). Strahlenther Onkol. 2020; 196(9): 795-804.

[121]

Ruhstaller T, Thuss-Patience P, Hayoz S, et al. Neoadjuvant chemotherapy followed by chemoradiation and surgery with and without cetuximab in patients with resectable esophageal cancer: a randomized, open-label, phase III trial (SAKK 75/08). Ann Oncol. 2018; 29(6): 1386-1393.

[122]

Suntharalingam M, Winter K, Ilson D, et al. Effect of the addition of cetuximab to paclitaxel, cisplatin, and radiation therapy for patients with esophageal cancer: the NRG oncology RTOG 0436 phase 3 randomized clinical trial. JAMA Oncol. 2017; 3(11): 1520-1528.

[123]

Gibson MK, Catalano P, Kleinberg LR, et al. Phase II study of preoperative chemoradiotherapy with oxaliplatin, infusional 5-fluorouracil, and cetuximab followed by postoperative docetaxel and cetuximab in patients with adenocarcinoma of the esophagus: a trial of the ECOG-ACRIN Cancer Research Group (E2205). Oncologist. 2020; 25(1): e53-e59.

[124]

de Castro Junior G, Segalla JG, de Azevedo SJ, et al. A randomised phase II study of chemoradiotherapy with or without nimotuzumab in locally advanced oesophageal cancer: nICE trial. Eur J Cancer. 2018; 88: 21-30.

[125]

Meng X, Zheng A, Wang J, et al. Nimotuzumab plus concurrent chemo-radiotherapy in unresectable locally advanced oesophageal squamous cell carcinoma (ESCC): interim analysis from a Phase 3 clinical trial. Br J Cancer. 2023; 129(11): 1787-1792.

[126]

Huang J, Fan Q, Lu P, et al. Icotinib in patients with pretreated advanced esophageal squamous cell carcinoma with EGFR overexpression or EGFR gene amplification: a single-arm, multicenter phase 2 study. J Thorac Oncol. 2016; 11(6): 910-917.

[127]

Luo H, Jiang W, Ma L, et al. Icotinib with concurrent radiotherapy vs radiotherapy alone in older adults with unresectable esophageal squamous cell carcinoma: a phase II randomized clinical trial. JAMA Netw Open. 2020; 3(10): e2019440.

[128]

Shitara K, Bang YJ, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020; 382(25): 2419-2430.

[129]

Zhang Y, Qiu MZ, Wang JF, et al. Phase 1 multicenter, dose-expansion study of ARX788 as monotherapy in HER2-positive advanced gastric and gastroesophageal junction adenocarcinoma. Cell Rep Med. 2022; 3(11): 100814.

[130]

Rivera F, Izquierdo-Manuel M, Garcia-Alfonso P, et al. Perioperative trastuzumab, capecitabine and oxaliplatin in patients with HER2-positive resectable gastric or gastro-oesophageal junction adenocarcinoma: nEOHX phase II trial. Eur J Cancer. 2021; 145: 158-167.

[131]

Janjigian YY, Maron SB, Chatila WK, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2020; 21(6): 821-831.

[132]

Makiyama A, Sukawa Y, Kashiwada T, et al. Phase II study of trastuzumab beyond progression in patients with HER2-positive advanced gastric or gastroesophageal junction cancer: WJOG7112G (T-ACT Study). J Clin Oncol. 2020; 38(17): 1919-1927.

[133]

Hecht JR, Bang YJ, Qin SK, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: tRIO-013/LOGiC—a randomized phase III trial. J Clin Oncol. 2016; 34(5): 443-451.

[134]

Xu J, Ying J, Liu R, et al. KN026 (anti-HER2 bispecific antibody) in patients with previously treated, advanced HER2-expressing gastric or gastroesophageal junction cancer. Eur J Cancer. 2023; 178: 1-12.

[135]

Shen L, Li J, Xu J, et al. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). Gastric Cancer. 2015; 18(1): 168-176.

[136]

Patel JD, Lee JW, Carbone DP, et al. Phase II study of immunotherapy with tecemotide and bevacizumab after chemoradiation in patients with unresectable stage III non-squamous non-small-cell lung cancer (NS-NSCLC): a trial of the ECOG-ACRIN cancer research group (E6508). Clin Lung Cancer. 2020; 21(6): 520-526.

[137]

Cunningham D, Stenning SP, Smyth EC, et al. Peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): primary analysis results of a multicentre, open-label, randomised phase 2–3 trial. Lancet Oncol. 2017; 18(3): 357-370.

[138]

Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014; 15(11): 1224-1235.

[139]

Kawabata R, Izawa N, Suzuki T, et al. A multicenter, phase II trial of schedule modification for nab-paclitaxel in combination with ramucirumab for patients with previously treated advanced gastric or gastroesophageal junction cancer: the B-RAX Trial (JACCRO GC-09). Target Oncol. 2023; 18(3): 359-368.

[140]

Lorenzen S, Schwarz A, Pauligk C, et al. Ramucirumab plus irinotecan /leucovorin /5-FU versus ramucirumab plus paclitaxel in patients with advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction, who failed one prior line of palliative chemotherapy: the phase II/III RAMIRIS study (AIO-STO-0415). BMC Cancer. 2023; 23(1): 561.

[141]

Yoon HH, Bendell JC, Braiteh FS, et al. Ramucirumab combined with FOLFOX as front-line therapy for advanced esophageal, gastroesophageal junction, or gastric adenocarcinoma: a randomized, double-blind, multicenter Phase II trial. Ann Oncol. 2016; 27(12): 2196-2203.

[142]

Fuchs CS, Shitara K, Di Bartolomeo M, et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019; 20(3): 420-435.

[143]

Yamaguchi K, Fujitani K, Nagashima F, et al. Ramucirumab for the treatment of metastatic gastric or gastroesophageal junction adenocarcinoma following disease progression on first-line platinum-or fluoropyrimidine-containing combination therapy in Japanese patients: a phase 2, open-label study. Gastric Cancer. 2018; 21(6): 1041-1049.

[144]

Li N, Wu T, Hong YG, et al. A multi-center, single-arm, phase II study of anlotinib plus paclitaxel and cisplatin as the first-line therapy of recurrent/advanced esophageal squamous cell carcinoma. BMC Med. 2022; 20(1): 472.

[145]

Yap DWT, Leone AG, Wong NZH, et al. Effectiveness of immune checkpoint inhibitors in patients with advanced esophageal squamous cell carcinoma: a meta-analysis including low PD-L1 subgroups. JAMA Oncol. 2023; 9(2): 215-224.

[146]

Xu J, Kato K, Raymond E, et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first-line treatment for advanced or metastatic oesophageal squamous cell carcinoma (RATIONALE-306): a global, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2023; 24(5): 483-495.

[147]

Li C, Zhao S, Zheng Y, et al. Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1). Eur J Cancer. 2021; 144: 232-241.

[148]

Jiang N, Zhang J, Guo Z, et al. Short-course neoadjuvant radiotherapy combined with chemotherapy and toripalimab for locally advanced esophageal squamous cell carcinoma (SCALE-1): a single-arm phase Ib clinical trial. J Immunother Cancer. 2024; 12(1): e008229.

[149]

Stroes CI, Schokker S, Creemers A, et al. Phase II feasibility and biomarker study of neoadjuvant trastuzumab and pertuzumab with chemoradiotherapy for resectable human epidermal growth factor receptor 2-positive esophageal adenocarcinoma: TRAP Study. J Clin Oncol. 2020; 38(5): 462-471.

[150]

Verschoor YL, van de Haar J, van den Berg JG, et al. Neoadjuvant atezolizumab plus chemotherapy in gastric and gastroesophageal junction adenocarcinoma: the phase 2 PANDA trial. Nat Med. 2024; 30(2): 519-530.

[151]

van den Ende T, de Clercq NC, van Berge Henegouwen MI, et al. Neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: a single-arm phase II feasibility trial (PERFECT). Clin Cancer Res. 2021; 27(12): 3351-3359.

[152]

Yang G, Su X, Huang Y, et al. Intensive cycles of neoadjuvant camrelizumab combined with chemotherapy in locally advanced esophageal squamous cell carcinoma: a single-arm, phase II trial. J Transl Med. 2023; 21(1): 411.

[153]

Yang W, Xing X, Yeung SJ, et al. Neoadjuvant programmed cell death 1 blockade combined with chemotherapy for resectable esophageal squamous cell carcinoma. J Immunother Cancer. 2022; 10(1): e003497.

[154]

Duan H, Wang T, Luo Z, et al. A multicenter single-arm trial of sintilimab in combination with chemotherapy for neoadjuvant treatment of resectable esophageal cancer (SIN-ICE study). Ann Transl Med. 2021; 9(22): 1700.

[155]

Zhang Z, Ye J, Li H, et al. Neoadjuvant sintilimab and chemotherapy in patients with resectable esophageal squamous cell carcinoma: a prospective, single-arm, phase 2 trial. Front Immunol. 2022; 13: 1031171.

[156]

Zhang Z, Hong ZN, Xie S, et al. Neoadjuvant sintilimab plus chemotherapy for locally advanced esophageal squamous cell carcinoma: a single-arm, single-center, phase 2 trial (ESONICT-1). Ann Transl Med. 2021; 9(21): 1623.

[157]

He W, Wang C, Wu L, et al. Tislelizumab plus chemotherapy sequential neoadjuvant therapy for Non-cCR patients after neoadjuvant chemoradiotherapy in locally advanced esophageal squamous cell carcinoma (ETNT): an exploratory study. Front Immunol. 2022; 13: 853922.

[158]

Yan X, Duan H, Ni Y, et al. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: a prospective, single-arm, phase II study (TD-NICE). Int J Surg. 2022; 103: 106680.

[159]

Yang J, Huang A, Yang K, Jiang K. Neoadjuvant chemoradiotherapy plus tislelizumab followed by surgery for esophageal carcinoma (CRISEC study): the protocol of a prospective, single-arm, phase II trial. BMC Cancer. 2023; 23(1): 249.

[160]

Gao L, Lu J, Zhang P, Hong ZN, Kang M. Toripalimab combined with docetaxel and cisplatin neoadjuvant therapy for locally advanced esophageal squamous cell carcinoma: a single-center, single-arm clinical trial (ESONICT-2). J Gastrointest Oncol. 2022; 13(2): 478-487.

[161]

Chen R, Liu Q, Li Q, et al. A phase II clinical trial of toripalimab combined with neoadjuvant chemoradiotherapy in locally advanced esophageal squamous cell carcinoma (NEOCRTEC1901). EClinicalMedicine. 2023; 62: 102118.

[162]

He W, Leng X, Mao T, et al. Toripalimab plus paclitaxel and carboplatin as neoadjuvant therapy in locally advanced resectable esophageal squamous cell carcinoma. Oncologist. 2022; 27(1): e18-e28.

[163]

Qin J, Xue L, Hao A, et al. Neoadjuvant chemotherapy with or without camrelizumab in resectable esophageal squamous cell carcinoma: the randomized phase 3 ESCORT-NEO/NCCES01 trial. Nat Med. 2024; 30(9): 2549-2557.

[164]

Liu J, Li J, Lin W, et al. Neoadjuvant camrelizumab plus chemotherapy for resectable, locally advanced esophageal squamous cell carcinoma (NIC-ESCC2019): a multicenter, phase 2 study. Int J Cancer. 2022; 151(1): 128-137.

[165]

Lorenzen S, Gotze TO, Thuss-Patience P, et al. Perioperative atezolizumab plus fluorouracil, leucovorin, oxaliplatin, and docetaxel for resectable esophagogastric cancer: interim results from the randomized, multicenter, phase II/III DANTE/IKF-s633 trial. J Clin Oncol. 2024; 42(4): 410-420.

[166]

Andre T, Tougeron D, Piessen G, et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: the GERCOR NEONIPIGA Phase II Study. J Clin Oncol. 2023; 41(2): 255-265.

[167]

Wei J, Lu X, Liu Q, et al. Neoadjuvant sintilimab in combination with concurrent chemoradiotherapy for locally advanced gastric or gastroesophageal junction adenocarcinoma: a single-arm phase 2 trial. Nat Commun. 2023; 14(1): 4904.

[168]

Goetze TO, Hofheinz RD, Gaiser T, et al. Perioperative FLOT plus ramucirumab for resectable esophagogastric adenocarcinoma: a randomized phase II/III trial of the German AIO and Italian GOIM. Int J Cancer. 2023; 153(1): 153-163.

[169]

Kelly RJ, Ajani JA, Kuzdzal J, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 2021; 384(13): 1191-1203.

[170]

Gao X, Xu N, Li Z, et al. Safety and antitumour activity of cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, for patients with advanced solid tumours (COMPASSION-03): a multicentre, open-label, phase 1b/2 trial. Lancet Oncol. 2023; 24(10): 1134-1146.

[171]

Stein A, Paschold L, Tintelnot J, et al. Efficacy of ipilimumab vs FOLFOX in combination with nivolumab and trastuzumab in patients with previously untreated ERBB2-positive esophagogastric adenocarcinoma: the AIO INTEGA randomized clinical trial. JAMA Oncol. 2022; 8(8): 1150-1158.

[172]

Thuss-Patience P, Hogner A, Goekkurt E, et al. Ramucirumab, avelumab, and paclitaxel as second-line treatment in esophagogastric adenocarcinoma: the phase 2 RAP (AIO-STO-0218) nonrandomized controlled trial. JAMA Netw Open. 2024; 7(1): e2352830.

[173]

Lee DK, Park SR, Kim YH, et al. A phase 2 study of spartalizumab (PDR001) among patients with recurrent or metastatic esophageal squamous cell carcinoma (KCSG HN18-17, K-MASTER project 12). Oncoimmunology. 2024; 13(1): 2371563.

[174]

Luo H, Lu J, Bai Y, et al. Effect of camrelizumab vs placebo added to chemotherapy on survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma: the ESCORT-1st randomized clinical trial. JAMA. 2021; 326(10): 916-925.

[175]

Sun JM, Shen L, Shah MA, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet. 2021; 398(10302): 759-771.

[176]

Wang ZX, Cui C, Yao J, et al. Toripalimab plus chemotherapy in treatment-naive, advanced esophageal squamous cell carcinoma (JUPITER-06): a multi-center phase 3 trial. Cancer Cell. 2022; 40(3): 277-288. e3.

[177]

Lu Z, Wang J, Shu Y, et al. Sintilimab versus placebo in combination with chemotherapy as first line treatment for locally advanced or metastatic oesophageal squamous cell carcinoma (ORIENT-15): multicentre, randomised, double blind, phase 3 trial. BMJ. 2022; 377: e068714.

[178]

Tougeron D, Dahan L, Evesque L, et al. FOLFIRI plus durvalumab with or without tremelimumab in second-line treatment of advanced gastric or gastroesophageal junction adenocarcinoma: the PRODIGE 59-FFCD 1707-DURIGAST randomized clinical trial. JAMA Oncol. 2024; 10(6): 709-717.

[179]

Satoh T, Kato K, Ura T, et al. Five-year follow-up of nivolumab treatment in Japanese patients with esophageal squamous-cell carcinoma (ATTRACTION-1/ONO-4538-07). Esophagus. 2021; 18(4): 835-843.

[180]

Ebert MP, Meindl-Beinker NM, Gutting T, et al. Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev. 2022; 3(6): e417-e427.

[181]

Huang J, Xu J, Chen Y, et al. Camrelizumab versus investigator’s choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2020; 21(6): 832-842.

[182]

Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019; 20(11): 1506-1517.

[183]

Kojima T, Shah MA, Muro K, et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol. 2020; 38(35): 4138-4148.

[184]

Shen L, Kato K, Kim SB, et al. Tislelizumab versus chemotherapy as second-line treatment for advanced or metastatic esophageal squamous cell carcinoma (RATIONALE-302): a randomized phase III study. J Clin Oncol. 2022; 40(26): 3065-3076.

[185]

Shang X, Zhang W, Zhao G, et al. Pembrolizumab combined with neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy followed by surgery for locally advanced oesophageal squamous cell carcinoma: protocol for a multicentre, prospective, randomized-controlled, phase III clinical study (Keystone-002). Front Oncol. 2022; 12: 831345.

[186]

Chen M, Huang Y, Zhang S, et al. Safety and efficacy of camrelizumab combined with radiotherapy as neoadjuvant therapy for locally advanced esophageal squamous cell carcinoma: a prospective single-arm phase II clinical trial protocol. Trials. 2023; 24(1): 554.

[187]

Yang Y, Zhu L, Cheng Y, et al. Three-arm phase II trial comparing camrelizumab plus chemotherapy versus camrelizumab plus chemoradiation versus chemoradiation as preoperative treatment for locally advanced esophageal squamous cell carcinoma (NICE-2 Study). BMC Cancer. 2022; 22(1): 506.

[188]

Yin J, Lin S, Fang Y, et al. Neoadjuvant therapy with immunoagent (nivolumab) or placebo plus chemotherapy followed by surgery and adjuvant treatment in subjects with resectable esophageal squamous cell carcinoma: study protocol of a randomized, multicenter, double blind, phase II trial (NATION-2203 trial). J Thorac Dis. 2023; 15(2): 718-730.

[189]

Chen M, Huang Y, Zhang S, et al. Camrelizumab in combination with chemotherapy versus concurrent chemoradiotherapy for the conversion of locally advanced unresectable oesophageal squamous carcinoma: protocol for a two-arm, open-label phase II trial. BMJ Open. 2024; 14(2): e075421.

[190]

Zheng Y, Li C, Yu B, et al. Preoperative pembrolizumab combined with chemoradiotherapy for esophageal squamous cell carcinoma: trial design. JTCVS Open. 2022; 9: 293-299.

[191]

Shah MA, Bennouna J, Doi T, et al. KEYNOTE-975 study design: a Phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Future Oncol. 2021; 17(10): 1143-1153.

[192]

Yu R, Wang W, Li T, et al. RATIONALE 311: tislelizumab plus concurrent chemoradiotherapy for localized esophageal squamous cell carcinoma. Future Oncol. 2021; 17(31): 4081-4089.

[193]

Yang X, Zheng X, Hu S, et al. Immune checkpoint inhibitors as the second-line treatment for advanced esophageal squamous cell carcinoma: a cost-effectiveness analysis based on network meta-analysis. BMC Cancer. 2024; 24(1): 654.

[194]

Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010; 376(9742): 687-697.

[195]

Petty RD, Dahle-Smith A, Stevenson DAJ, et al. Gefitinib and EGFR gene copy number aberrations in esophageal cancer. J Clin Oncol. 2017; 35(20): 2279-2287.

[196]

Lordick F, Kang YK, Chung HC, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013; 14(6): 490-499.

[197]

Konnerth D, Gaasch A, Westphalen CB, et al. Targeted RT study: results on early toxicity of targeted therapies and radiotherapy. Radiat Oncol. 2024; 19(1): 113.

[198]

Oyoshi H, Du J, Sakai SA, et al. Comprehensive single-cell analysis demonstrates radiotherapy-induced infiltration of macrophages expressing immunosuppressive genes into tumor in esophageal squamous cell carcinoma. Sci Adv. 2023; 9(50): eadh9069.

[199]

Liu P, Wang GF, Peng H, et al. Effectiveness and safety of targeted agents combined with chemoradiotherapy for the treatment of esophageal cancer: a network meta-analysis. Front Oncol. 2021; 11: 621917.

[200]

Catenacci DVT, Kang YK, Park H, et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22-05): a single-arm, phase 1b-2 trial. Lancet Oncol. 2020; 21(8): 1066-1076.

[201]

Tabernero J, Hoff PM, Shen L, et al. Pertuzumab, trastuzumab, and chemotherapy in HER2-positive gastric/gastroesophageal junction cancer: end-of-study analysis of the JACOB phase III randomized clinical trial. Gastric Cancer. 2023; 26(1): 123-131.

[202]

Shi ZD, Pang K, Wu ZX, et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther. 2023; 8(1): 113.

[203]

Ayoub NM. Editorial: novel combination therapies for the treatment of solid cancers. Front Oncol. 2021; 11: 708943.

[204]

Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019; 18(8): 585-608.

[205]

Baah S, Laws M, Rahman KM. Antibody-drug conjugates—a tutorial review. Molecules. 2021; 26(10): 2943.

[206]

Ma H, Huang B, Zhang Y. Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov Today. 2020; 25(9): 1682-1692.

[207]

Blange D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HWM. Resistance mechanisms to HER2-targeted therapy in gastroesophageal adenocarcinoma: a systematic review. Cancer Treat Rev. 2022; 108: 102418.

[208]

Li X, Li M, Huang M, et al. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother. 2022; 150: 113064.

[209]

Luan S, Zeng X, Zhang C, et al. Advances in drug resistance of esophageal cancer: from the perspective of tumor microenvironment. Front Cell Dev Biol. 2021; 9: 664816.

[210]

Sun M, Li Z, Wang X, et al. TAOK3 facilitates esophageal squamous cell carcinoma progression and cisplatin resistance through augmenting autophagy mediated by IRGM. Adv Sci (Weinh). 2023; 10(29): e2300864.

[211]

Hu C, Mi W, Li F, et al. Optimizing drug combination and mechanism analysis based on risk pathway crosstalk in pan cancer. Sci Data. 2024; 11(1): 74.

[212]

Jiang P, Huang S, Fu Z, Sun Z, Lakowski TM, Hu P. Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput Struct Biotechnol J. 2020; 18: 427-438.

[213]

Wang Y, Liu C, Chen H, et al. Clinical efficacy and identification of factors confer resistance to afatinib (tyrosine kinase inhibitor) in EGFR-overexpressing esophageal squamous cell carcinoma. Signal Transduct Target Ther. 2024; 9(1): 153.

[214]

Sui X, Chen C, Zhou X, et al. Integrative analysis of bulk and single-cell gene expression profiles to identify tumor-associated macrophage-derived CCL18 as a therapeutic target of esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2023; 42(1): 51.

[215]

Cui Y, Yan M, Wu W, et al. ESCCAL-1 promotes cell-cycle progression by interacting with and stabilizing galectin-1 in esophageal squamous cell carcinoma. NPJ Precis Oncol. 2022; 6(1): 12.

[216]

Chen Z, Zhao M, Liang J, et al. Dissecting the single-cell transcriptome network underlying esophagus non-malignant tissues and esophageal squamous cell carcinoma. EBioMedicine. 2021; 69: 103459.

[217]

Mezheyeuski A, Backman M, Mattsson J, et al. An immune score reflecting pro-and anti-tumoural balance of tumour microenvironment has major prognostic impact and predicts immunotherapy response in solid cancers. EBioMedicine. 2023; 88: 104452.

[218]

Chen Y, Feng R, He B, et al. PD-1H expression associated with CD68 macrophage marker confers an immune-activated microenvironment and favorable overall survival in human esophageal squamous cell carcinoma. Front Mol Biosci. 2021; 8: 777370.

[219]

Ma M, Li L, Yang SH, et al. Lymphatic endothelial cell-mediated accumulation of CD177(+)Treg cells suppresses antitumor immunity in human esophageal squamous cell carcinoma. Oncoimmunology. 2024; 13(1): 2327692.

[220]

Yue P, Bie F, Zhu J, et al. Minimal residual disease profiling predicts pathological complete response in esophageal squamous cell carcinoma. Mol Cancer. 2024; 23(1): 96.

[221]

Faiz Z, Huijgen LJW, Alqethami HJ, Burgerhof JGM, Kats-Ugurlu G, Plukker JTM. Prevalence and prognostic significance of extramural venous invasion in patients with locally advanced esophageal cancer. Ann Surg Oncol. 2018; 25(6): 1588-1597.

[222]

Wang A, Tan Y, Wang S, Chen X. The prognostic value of separate lymphatic invasion and vascular invasion in oesophageal squamous cell carcinoma: a meta-analysis and systematic review. BMC Cancer. 2022; 22(1): 1329.

[223]

Gao Y, Guo W, Geng X, et al. Prognostic value of tumor-infiltrating lymphocytes in esophageal cancer: an updated meta-analysis of 30 studies with 5, 122 patients. Ann Transl Med. 2020; 8(13): 822.

[224]

Chen N, Yu Y, Shen W, Xu X, Fan Y. Nutritional status as prognostic factor of advanced oesophageal cancer patients treated with immune checkpoint inhibitors. Clin Nutr. 2024; 43(1): 142-153.

[225]

Li H, Chen N, Wang W, Ye L, Fan Y, Xu X. Investigating the impact of the inflammatory immune microenvironment and steroids or COX-2 inhibitors usage on immunotherapy in advanced esophageal squamous cell carcinoma (ESCC): a propensity score matched analysis. Clin Transl Oncol. 2024.

[226]

Nie T, Wu F, Heng Y, et al. Influence of skeletal muscle and intermuscular fat on postoperative complications and long-term survival in rectal cancer patients. J Cachexia Sarcopenia Muscle. 2024; 15(2): 702-717.

[227]

Grady WM, Yu M, Markowitz SD, Chak A. Barrett’s esophagus and esophageal adenocarcinoma biomarkers. Cancer Epidemiol Biomarkers Prev. 2020; 29(12): 2486-2494.

[228]

Passaro A, Al Bakir M, Hamilton EG, et al. Cancer biomarkers: emerging trends and clinical implications for personalized treatment. Cell. 2024; 187(7): 1617-1635.

[229]

Van Cutsem E, di Bartolomeo M, Smyth E, et al. Trastuzumab deruxtecan in patients in the USA and Europe with HER2-positive advanced gastric or gastroesophageal junction cancer with disease progression on or after a trastuzumab-containing regimen (DESTINY-Gastric02): primary and updated analyses from a single-arm, phase 2 study. Lancet Oncol. 2023; 24(7): 744-756.

[230]

Chen L, Shi H, Zhang W, et al. Carfilzomib suppressed LDHA-mediated metabolic reprogramming by targeting ATF3 in esophageal squamous cell carcinoma. Biochem Pharmacol. 2024; 219: 115939.

[231]

Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: mechanisms and clinical trials. Mol Cancer. 2023; 22(1): 93.

[232]

Aggarwal V, Workman CJ, Vignali DAA. LAG-3 as the third checkpoint inhibitor. Nat Immunol. 2023; 24(9): 1415-1422.

[233]

Wang W, Chen D, Zhao Y, et al. Characterization of LAG-3, CTLA-4, and CD8(+) TIL density and their joint influence on the prognosis of patients with esophageal squamous cell carcinoma. Ann Transl Med. 2019; 7(23): 776.

[234]

Gestermann N, Saugy D, Martignier C, et al. LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures. Oncoimmunology. 2020; 9(1): 1736792.

[235]

Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022; 77: 103941.

[236]

Gao Q, Wang S, Li F, et al. High mobility group protein B1 decreases surface localization of PD-1 to augment T-cell activation. Cancer Immunol Res. 2022; 10(7): 844-855.

[237]

Wang L, Wang X, Wu Y, et al. A novel microenvironment regulated system CAR-T (MRS.CAR-T) for immunotherapeutic treatment of esophageal squamous carcinoma. Cancer Lett. 2023; 568: 216303.

[238]

Shi H, Yu F, Mao Y, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. J Thorac Dis. 2018; 10(5): 2779-2788.

[239]

Xuan Y, Sheng Y, Zhang D, et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models. Transl Oncol. 2021; 14(8): 101138.

[240]

Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med. 2018; 12(4): 440-450.

[241]

Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol. 2021; 14(1): 73.

[242]

Liu T, Dai X, Xu Y, et al. CD22 is a potential target of CAR-NK cell therapy for esophageal squamous cell carcinoma. J Transl Med. 2023; 21(1): 710.

[243]

Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014; 15(7): e257-e267.

[244]

Narita M, Kanda T, Abe T, et al. Immune responses in patients with esophageal cancer treated with SART1 peptide-pulsed dendritic cell vaccine. Int J Oncol. 2015; 46(4): 1699-1709.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/