A SARS-CoV-2 EG.5 mRNA vaccine induces a broad-spectrum immune response in mice

Hongyu Wang , Qinhua Peng , Xinxian Dai , Zhifang Ying , Xiaohong Wu , Xinyu Liu , Hongshan Xu , Jia Li , Leitai Shi , Jingjing Liu , Yunpeng Wang , Danhua Zhao , Yanqiu Huang , Lihong Yang , Ren Yang , Guangzhi Yue , Yue Suo , Qiang Ye , Shouchun Cao , Yuhua Li

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e779

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e779 DOI: 10.1002/mco2.779
ORIGINAL ARTICLE

A SARS-CoV-2 EG.5 mRNA vaccine induces a broad-spectrum immune response in mice

Author information +
History +
PDF

Abstract

The emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.5) and other emergent SARS-CoV-2 subvariants that encodes the EG.5 spike protein. Six-week-old female BALB/C mice were used to assess humoral and cellular immune responses and cross-reactive neutralizing activity against various SARS-CoV-2 subvariants. Meanwhile different immunization strategies and doses were performed to detect the immunogenicity of this mRNA vaccine. Our results show that two doses of 5 µg CoV072 or a single dose of 15 µg CoV072 both induced broad-spectrum cross-protection ability in mice. Compared with a single dose of 15 µg CoV072, two doses of 5 µg COV072 exhibited higher levels of pseudovirus neutralizing antibody (PNAb) and cross-reactive IgG responses to multiple variants. Moreover, higher levels of neutralizing antibody (NAb) against live XBB and EG.5 variants were also induced. Th1-biased cellular immune response was induced in all vaccination groups. The antigen design and immunization strategy of this study have reference significance for the research of the next generation of COVID-19 vaccine and other vaccines.

Keywords

immunization strategies / immunogenicity / mRNA-based vaccines / SARS-CoV-2 variants

Cite this article

Download citation ▾
Hongyu Wang, Qinhua Peng, Xinxian Dai, Zhifang Ying, Xiaohong Wu, Xinyu Liu, Hongshan Xu, Jia Li, Leitai Shi, Jingjing Liu, Yunpeng Wang, Danhua Zhao, Yanqiu Huang, Lihong Yang, Ren Yang, Guangzhi Yue, Yue Suo, Qiang Ye, Shouchun Cao, Yuhua Li. A SARS-CoV-2 EG.5 mRNA vaccine induces a broad-spectrum immune response in mice. MedComm, 2025, 6(1): e779 DOI:10.1002/mco2.779

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Parums DV. Editorial: the 2022 World Health Organization (WHO) priority recommendations and response to the omicron variant (B.1.1.529) of SARS-CoV-2. Med Sci Monit. 2022; 28: e936199. Published 2022 Feb 1.

[2]

Tallei TE, Alhumaid S, AlMusa Z, et al. Update on the omicron sub-variants BA.4 and BA.5. Rev Med Virol. 2023; 33(1): e2391.

[3]

Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell. 2023; 186(2): 279-286.

[4]

Qu P, Faraone JN, Evans JP, et al. Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants. Cell Rep. 2023; 42(5): 112443.

[5]

Parums DV. Editorial: the XBB.1.5 (‘Kraken’) subvariant of Omicron SARS-CoV-2 and its rapid global spread. Med Sci Monit. 2023; 29: e939580. Published 2023 Feb 1.

[6]

Wu Y, Wu N, Jia X, et al. Long-term immune response to Omicron-specific mRNA vaccination in mice, hamsters, and nonhuman primates. MedComm. 2023; 4(6): e460.

[7]

Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun. 2023; 14(1): 2800. Published 2023 May 16.

[8]

World Health Organization (WHO). EG.5 initial risk evaluation. 2023. Available at: https://www.who.int/docs/default-source/coronaviruse/21112023_eg.5_ure.pdf?

[9]

Tsujino S, Deguchi S, Nomai T, et al. Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant. Microbiol Immunol. 2024; 68(9): 305-330. Published online July 4, 2024.

[10]

Esmaeilzadeh A, Ebrahimi F, Jahani Maleki A, Siahmansouri A. EG.5 (Eris) and BA.2.86 (Pirola) two new subvariants of SARS-CoV-2: a new face of old COVID-19. Infection. 2024; 52(2): 337-343.

[11]

Uraki R, Kiso M, Iwatsuki-Horimoto K, et al. Characterization of a SARS-CoV-2 EG.5.1 clinical isolate in vitro and in vivo. Cell Rep. 2023; 42(12): 113580.

[12]

Abbasi J. What to know about EG.5, the latest SARS-CoV-2 variant of interest. JAMA. 2023; 330(10): 900-901.

[13]

Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022; 23(4): 543-555.

[14]

Wang Q, Guo Y, Zhang RM, et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. Lancet Infect Dis. 2023; 23(11): e467.

[15]

Lasrado N, Collier AY, Hachmann NP, et al. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86. Vaccine. 2023; 41(47): 6904-6909.

[16]

Hu Y, Zou J, Kurhade C, et al. Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1. Emerg Microbes Infect. 2023; 12(2): 2271089.

[17]

World Health Organization (WHO). Technical Advisory Group on COVID-19 vaccine composition. 2023. Available from: https://www.who.int/groups/technical-advisory-group-on-covid-19-vaccine-composition-(tag-co-vac)

[18]

Yisimayi A, Song W, Wang J, et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Nature. 2024; 625(7993): 148-156.

[19]

Wang Q, Guo Y, Tam AR, et al. Deep immunological imprinting due to the ancestral spike in the current bivalent COVID-19 vaccine. Cell Rep Med. 2023; 4(11): 101258.

[20]

Accorsi EK, Britton A, Fleming-Dutra KE, et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants. JAMA. 2022; 327(7): 639-651.

[21]

Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. N Engl J Med. 2022; 386(16): 1579-1580.

[22]

Andrews N, Tessier E, Stowe J, et al. Duration of protection against mild and severe disease by COVID-19 vaccines. N Engl J Med. 2022; 386(4): 340-350.

[23]

Food and Drug Administration (FDA). Recommendation for the 2023–2024 formula of COVID-19 vaccines in the U.S. https://www.fda.gov/media/169591/download?attachment

[24]

Faraone JN, Qu P, Goodarzi N, et al. Immune evasion and membrane fusion of SARS-CoV-2 XBB subvariants EG.5.1 and XBB.2.3. Emerg Microbes Infect. 2023; 12(2): 2270069.

[25]

Planas D, Staropoli I, Michel V, et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Preprint. bioRxiv. 2024; 2023: 1120567873.

[26]

Quarleri J, Delpino MV, Galvan V. Anticipating the future of the COVID-19 pandemic: insights into the emergence of SARS-CoV-2 variant JN.1 and its projected impact on older adults. Geroscience. 2024; 46(3): 2879-2883.

[27]

Yang S, Yu Y, Xu Y, et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect Dis. 2024; 24(3): e156.

[28]

Looi MK. COVID-19: scientists sound alarm over new BA.2.86 “Pirola” variant. BMJ. 2023; 382: 1964.

[29]

Kaku Y, Okumura K, Padilla-Blanco M, et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis. 2024; 24(2): e82.

[30]

Wang Q, Guo Y, Bowen A, et al. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1. Cell Host Microbe. 2024; 32(3): 315-321.

[31]

Mateus J, Dan JM, Zhang Z, et al. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science. 2021; 374(6566): eabj9853.

[32]

Thimmiraju SR, Adhikari R, Villar MJ, et al. A recombinant protein XBB.1.5 RBD/Alum/CpG vaccine elicits high neutralizing antibody titers against Omicron subvariants of SARS-CoV-2. Vaccines (Basel). 2023; 11(10): 1557.

[33]

Tortorici MA, Addetia A, Seo AJ, et al. Persistent immune imprinting after XBB.1.5 COVID vaccination in humans. Preprint. bioRxiv. 2023; 2023.1128569129.

[34]

World Health Organization (WHO). Statement on the antigen composition of COVID-19 vaccines. 2023. https://www.who.int/zh/news/item/13-12-2023-statement-on-the-antigen-composition-of-covid-19-vaccines

[35]

Wang J, Lan T, Wei Y, Tanaka Y. Omicron variant: a booster depending on infection histories. Signal Transduct Target Ther. 2023; 8(1): 6.

[36]

Yang S, Duan L, Wang C, et al. Activation and induction of antigen-specific T follicular helper cells play a critical role in recombinant SARS-CoV-2 RBD vaccine-induced humoral responses. Mol Biomed. 2023; 4(1): 50.

[37]

Lelis F, Byk LA, Pustylnikov S, et al. Safety, immunogenicity and efficacy of an mRNA-based COVID-19 vaccine, GLB-COV2-043, in preclinical animal models. Sci Rep. 2023; 13(1): 21172.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/