Targeting immunosenescence for improved tumor immunotherapy

Zaoqu Liu , Lulu Zuo , Zhaokai Zhou , Shutong Liu , Yuhao Ba , Anning Zuo , Yuqing Ren , Chuhan Zhang , Yukang Chen , Hongxuan Ma , Yudi Xu , Peng Luo , Quan Cheng , Hui Xu , Yuyuan Zhang , Siyuan Weng , Xinwei Han

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e777

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e777 DOI: 10.1002/mco2.777
REVIEW

Targeting immunosenescence for improved tumor immunotherapy

Author information +
History +
PDF

Abstract

Tumor immunotherapy has significantly transformed the field of oncology over the past decade. An optimal tumor immunotherapy would ideally elicit robust innate and adaptive immune responses within tumor immune microenvironment (TIME). Unfortunately, immune system experiences functional decline with chronological age, a process termed “immunosenescence,” which contributes to impaired immune responses against pathogens, suboptimal vaccination outcomes, and heightened vulnerability to various diseases, including cancer. In this context, we will elucidate hallmarks and molecular mechanisms underlying immunosenescence, detailing alterations in immunosenescence at molecular, cellular, organ, and disease levels. The role of immunosenescence in tumorigenesis and senescence-related extracellular matrix (ECM) has also been addressed. Recognizing that immunosenescence is a dynamic process influenced by various factors, we will evaluate treatment strategies targeting hallmarks and molecular mechanisms, as well as methods for immune cell, organ restoration, and present emerging approaches in immunosenescence for tumor immunotherapy. The overarching goal of immunosenescence research is to prevent tumor development, recurrence, and metastasis, ultimately improving patient prognosis. Our review aims to reveal latest advancements and prospective directions in the field of immunosenescence research, offering a theoretical basis for development of practical anti-immunosenescence and anti-tumor strategies.

Keywords

immune responses / immunosenescence / immunotherapy / inflammaging / older patients / therapeutic strategies / tumor immune microenvironment

Cite this article

Download citation ▾
Zaoqu Liu, Lulu Zuo, Zhaokai Zhou, Shutong Liu, Yuhao Ba, Anning Zuo, Yuqing Ren, Chuhan Zhang, Yukang Chen, Hongxuan Ma, Yudi Xu, Peng Luo, Quan Cheng, Hui Xu, Yuyuan Zhang, Siyuan Weng, Xinwei Han. Targeting immunosenescence for improved tumor immunotherapy. MedComm, 2024, 5(11): e777 DOI:10.1002/mco2.777

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020; 20(2): 89-106.

[2]

Bordon Y. Faulty engines in T cells accelerate ageing and disease. Nat Rev Immunol. 2020; 20(7): 406-407.

[3]

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020; 17(8): 807-821.

[4]

Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immun Ageing. 2018; 15: 11.

[5]

Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020; 13(1): 151.

[6]

DeSantis CE, Miller KD, Dale W, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin. 2019; 69(6): 452-467.

[7]

Aging Biomarker C, Bao H, Cao J, et al. Biomarkers of aging. Sci China Life Sci. 2023; 66(5): 893-1066.

[8]

Rodrigues LP, Teixeira VR, Alencar-Silva T, et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021; 59: 9-21.

[9]

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023; 186(2): 243-278.

[10]

Pawelec G. The human immunosenescence phenotype: does it exist? Semin Immunopathol. 2020; 42(5): 537-544.

[11]

Miller KN, Victorelli SG, Salmonowicz H, et al. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell. 2021; 184(22): 5506-5526.

[12]

Mendez-Bermudez A, Giraud-Panis MJ, Ye J, Gilson E. Heterochromatin replication goes hand in hand with telomere protection. Nat Struct Mol Biol. 2020; 27(4): 313-318.

[13]

Ye J, Renault VM, Jamet K, Gilson E. Transcriptional outcome of telomere signalling. Nat Rev Genet. 2014; 15(7): 491-503.

[14]

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019; 20(5): 299-309.

[15]

Slawinska N, Krupa R. Molecular aspects of senescence and organismal ageing-DNA damage response, telomeres, inflammation and chromatin. Int J Mol Sci. 2021; 22(2): 590.

[16]

Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging. 2016; 8(1): 3-11.

[17]

Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023; 8(1): 210.

[18]

Hogg SJ, Beavis PA, Dawson MA, Johnstone RW. Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov. 2020; 19(11): 776-800.

[19]

Sala AJ, Morimoto RI. Protecting the future: balancing proteostasis for reproduction. Trends Cell Biol. 2022; 32(3): 202-215.

[20]

Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019; 20(7): 421-435.

[21]

Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015; 84: 435-464.

[22]

Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019; 176(1-2): 11-42.

[23]

Cassidy LD, Young ARJ, Young CNJ, et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat Commun. 2020; 11(1): 307.

[24]

Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014; 15(2): 81-94.

[25]

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24(10): R453-R462.

[26]

DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev. 2017; 33: 89-104.

[27]

Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med. 2023; 55(6): 1076-1089.

[28]

Riera CE, Dillin A. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol. 2015; 17(3): 196-203.

[29]

Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: a vertebrate perspective. Cell. 2019; 177(1): 200-220.

[30]

Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019; 179(4): 813-827.

[31]

Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014; 15(7): 482-496.

[32]

Schmitt CA, Wang B, Demaria M. Senescence and cancer—role and therapeutic opportunities. Nat Rev Clin Oncol. 2022; 19(10): 619-636.

[33]

Palmer AK, Tchkonia T, Kirkland JL. Targeting cellular senescence in metabolic disease. Mol Metab. 2022; 66: 101601.

[34]

Panagopoulos A, Altmeyer M. The hammer and the dance of cell cycle control. Trends Biochem Sci. 2021; 46(4): 301-314.

[35]

Idda ML, McClusky WG, Lodde V, et al. Survey of senescent cell markers with age in human tissues. Aging. 2020; 12(5): 4052-4066.

[36]

Ren R, Ocampo A, Liu GH, Izpisua Belmonte JC. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 2017; 26(3): 460-474.

[37]

Goodell MA, Rando TA. Stem cells and healthy aging. Science. 2015; 350(6265): 1199-1204.

[38]

Beumer J, Clevers H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell. 2024; 31(1): 7-24.

[39]

Beyret E, Martinez Redondo P, Platero Luengo A, Izpisua Belmonte JC. Elixir of life: thwarting aging with regenerative reprogramming. Circ Res. 2018; 122(1): 128-141.

[40]

De Pena CA, Lee YY, Van Tassel P. Lymphomatous involvement of the trigeminal nerve and Meckel cave: CT and MR appearance. AJNR Am J Neuroradiol. 1989; 10(5 suppl): S15-S17.

[41]

Tylutka A, Walas L, Zembron-Lacny A. Level of IL-6, TNF, and IL-1beta and age-related diseases: a systematic review and meta-analysis. Front Immunol. 2024; 15: 1330386.

[42]

Frasca D, Diaz A, Romero M, Garcia D, Blomberg BB. B cell immunosenescence. Annu Rev Cell Dev Biol. 2020; 36: 551-574.

[43]

Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018; 15(9): 505-522.

[44]

Hammami S, Ghzaiel I, Hammouda S, Sakly N, Hammami M, Zarrouk A. Evaluation of pro-inflammatory cytokines in frail Tunisian older adults. PLoS One. 2020; 15(11): e0242152.

[45]

Lopez-Otin C, Kroemer G. Hallmarks of health. Cell. 2021; 184(1): 33-63.

[46]

Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L, Wargo JA. Targeting the gut and tumor microbiota in cancer. Nat Med. 2022; 28(4): 690-703.

[47]

Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013; 4: 271.

[48]

Aiello A, Farzaneh F, Candore G, et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. 2019; 10: 2247.

[49]

Lin J, Cheon J, Brown R, et al. Systematic and cell type-specific telomere length changes in subsets of lymphocytes. J Immunol Res. 2016; 2016: 5371050.

[50]

Wikby A, Mansson IA, Johansson B, Strindhall J, Nilsson SE. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology. 2008; 9(5): 299-308.

[51]

Brunner S, Herndler-Brandstetter D, Arnold CR, et al. Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell. 2012; 11(4): 579-587.

[52]

Wikby A, Nilsson BO, Forsey R, et al. The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev. 2006; 127(8): 695-704.

[53]

Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015; 6(6): e1792.

[54]

Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol. 2010; 45(6): 410-418.

[55]

Houtkooper RH, Mouchiroud L, Ryu D, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013; 497(7450): 451-457.

[56]

Lee SJ, Hwang AB, Kenyon C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol. 2010; 20(23): 2131-2136.

[57]

Dillin A, Hsu AL, Arantes-Oliveira N, et al. Rates of behavior and aging specified by mitochondrial function during development. Science. 2002; 298(5602): 2398-2401.

[58]

Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003; 5(5): 557-561.

[59]

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 408(6809): 239-247.

[60]

Licastro F, Candore G, Lio D, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005; 2: 8.

[61]

Ugarte N, Petropoulos I, Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal. 2010; 13(4): 539-549.

[62]

Das R, Ponnappan S, Ponnappan U. Redox regulation of the proteasome in T lymphocytes during aging. Free Radic Biol Med. 2007; 42(4): 541-551.

[63]

Abbott A. Hacking the immune system could slow ageing—here’s how. Nature. 2024; 629(8011): 276-278.

[64]

Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018; 14(10): 576-590.

[65]

Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015; 24(pt A): 29-39.

[66]

Takasugi M, Yoshida Y, Hara E, Ohtani N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J. 2023; 290(5): 1348-1361.

[67]

Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014; 31(6): 722-733.

[68]

Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019; 117: 15-22.

[69]

Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530(7589): 184-189.

[70]

Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013; 75: 685-705.

[71]

Lee KA, Flores RR, Jang IH, Saathoff A, Robbins PD. Immune senescence, immunosenescence and aging. Front Aging. 2022; 3: 900028.

[72]

Yousefzadeh MJ, Zhao J, Bukata C, et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell. 2020; 19(3): e13094.

[73]

Rodier F, Coppe JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009; 11(8): 973-979.

[74]

Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993; 366(6454): 461-464.

[75]

Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001; 292(5515): 288-290.

[76]

Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001; 292(5514): 107-110.

[77]

Clancy DJ, Gems D, Harshman LG, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001; 292(5514): 104-106.

[78]

Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991; 253(5022): 905-909.

[79]

Mannick JB, Del Giudice G, Lattanzi M, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014; 6(268): 268ra179.

[80]

Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010; 11(6): 453-465.

[81]

Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev. 2017; 39: 3-14.

[82]

Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007; 32(1): 12-19.

[83]

Henson SM, Lanna A, Riddell NE, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest. 2014; 124(9): 4004-4016.

[84]

Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med. 2022; 100(5): 697-712.

[85]

Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev. 2020; 57: 100998.

[86]

Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013; 138(2): 105-115.

[87]

Nagaraj S, Youn JI, Gabrilovich DI. Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol. 2013; 191(1): 17-23.

[88]

Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med. 2021; 99(11): 1553-1569.

[89]

Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol. 2011; 11(2): 81.

[90]

Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev. 2020; 64: 101165.

[91]

Waters LR, Ahsan FM, Ten Hoeve J, et al. Ampk regulates IgD expression but not energy stress with B cell activation. Sci Rep. 2019; 9(1): 8176.

[92]

Kurupati RK, Haut LH, Schmader KE, Ertl HC. Age-related changes in B cell metabolism. Aging. 2019; 11(13): 4367-4381.

[93]

Imai SI. The NAD World 2.0: the importance of the inter-tissue communication mediated by NAMPT/NAD(+)/SIRT1 in mammalian aging and longevity control. NPJ Syst Biol Appl. 2016; 2: 16018.

[94]

Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014; 24(8): 464-471.

[95]

Lee KA, Robbins PD, Camell CD. Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol. 2021; 57: 107-116.

[96]

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019; 571(7764): 183-192.

[97]

Han C, Ge M, Ho PC, Zhang L. Fueling T-cell antitumor immunity: amino acid metabolism revisited. Cancer Immunol Res. 2021; 9(12): 1373-1382.

[98]

Van Avondt K, Strecker JK, Tulotta C, Minnerup J, Schulz C, Soehnlein O. Neutrophils in aging and aging-related pathologies. Immunol Rev. 2023; 314(1): 357-375.

[99]

Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022; 19(2): 177-191.

[100]

Bartlett DB, Fox O, McNulty CL, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016; 56: 12-20.

[101]

Sapey E, Greenwood H, Walton G, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 2014; 123(2): 239-248.

[102]

Palacios-Pedrero MA, Osterhaus A, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and options to halt declining immunity to virus infections. Front Immunol. 2021; 12: 681449.

[103]

Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 2019; 19(6): e37.

[104]

Fulop T, Larbi A, Pawelec G, et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2023; 64(2): 109-122.

[105]

Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017; 38: 40-51.

[106]

Hou Y, Chen M, Bian Y, et al. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines. 2024; 9(1): 77.

[107]

Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer vaccines: adjuvant potency, importance of age, lifestyle, and treatments. Front Immunol. 2020; 11: 615240.

[108]

Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev. 2019; 287(1): 202-225.

[109]

Jiang H, Jiang J. Balancing act: the complex role of NK cells in immune regulation. Front Immunol. 2023; 14: 1275028.

[110]

Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021; 14(1): 7.

[111]

Gounder SS, Abdullah BJJ, Radzuanb N, et al. Effect of aging on NK cell population and their proliferation at ex vivo culture condition. Anal Cell Pathol. 2018; 2018: 7871814.

[112]

Shin E, Bak SH, Park T, et al. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol. 2023; 14: 1192907.

[113]

Nunez C, Nishimoto N, Gartland GL, et al. B cells are generated throughout life in humans. J Immunol. 1996; 156(2): 866-872.

[114]

de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The dynamics of B cell aging in health and disease. Front Immunol. 2021; 12: 733566.

[115]

Yu Y, Lu C, Yu W, et al. B cells dynamic in aging and the implications of nutritional regulation. Nutrients. 2024; 16(4): 487.

[116]

Frasca D, Diaz A, Romero M, Mendez NV, Landin AM, Blomberg BB. Effects of age on H1N1-specific serum IgG1 and IgG3 levels evaluated during the 2011–2012 influenza vaccine season. Immun Ageing. 2013; 10(1): 14.

[117]

Ju CH, Blum LK, Kongpachith S, et al. Plasmablast antibody repertoires in elderly influenza vaccine responders exhibit restricted diversity but increased breadth of binding across influenza strains. Clin Immunol. 2018; 193: 70-79.

[118]

Dowery R, Benhamou D, Benchetrit E, et al. Peripheral B cells repress B-cell regeneration in aging through a TNF-alpha/IGFBP-1/IGF-1 immune-endocrine axis. Blood. 2021; 138(19): 1817-1829.

[119]

Nakaya HI, Wrammert J, Lee EK, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011; 12(8): 786-795.

[120]

Gibson KL, Wu YC, Barnett Y, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009; 8(1): 18-25.

[121]

Luo Y, Wang J, Li K, et al. Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci. 2022; 12(1): 57.

[122]

Martin V, Bryan Wu YC, Kipling D, Dunn-Walters D. Ageing of the B-cell repertoire. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1676): 20140237.

[123]

Lanfermeijer J, Borghans JAM, van Baarle D. How age and infection history shape the antigen-specific CD8(+) T-cell repertoire: implications for vaccination strategies in older adults. Aging Cell. 2020; 19(11): e13262.

[124]

Mold JE, Reu P, Olin A, et al. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol. 2019; 17(10): e3000383.

[125]

Gil J. Cellular senescence causes ageing. Nat Rev Mol Cell Biol. 2019; 20(7): 388.

[126]

Akbar AN, Henson SM, Lanna A. Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol. 2016; 37(12): 866-876.

[127]

van Beek JJP, Rescigno M, Lugli E. A fresh look at the T helper subset dogma. Nat Immunol. 2021; 22(2): 104-105.

[128]

Miller J. The function of the thymus and its impact on modern medicine. Science. 2020; 369(6503): eaba2429.

[129]

Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: implications for declined immunity and tissue repair. Ageing Res Rev. 2021; 65: 101231.

[130]

Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021; 22(6): 687-698.

[131]

Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019; 20(5): 303-320.

[132]

Wilkinson AC, Igarashi KJ, Nakauchi H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet. 2020; 21(9): 541-554.

[133]

Poulos MG, Ramalingam P, Gutkin MC, et al. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest. 2017; 127(11): 4163-4178.

[134]

Cakala-Jakimowicz M, Kolodziej-Wojnar P, Puzianowska-Kuznicka M. Aging-related cellular, structural and functional changes in the lymph nodes: a significant component of immunosenescence. Cells. 2021; 10(11): 3148.

[135]

Turner VM, Mabbott NA. Structural and functional changes to lymph nodes in ageing mice. Immunology. 2017; 151(2): 239-247.

[136]

Masters AR, Hall A, Bartley JM, et al. Assessment of lymph node stromal cells as an underlying factor in age-related immune impairment. J Gerontol A Biol Sci Med Sci. 2019; 74(11): 1734-1743.

[137]

Alex L, Rajan M, Xavier B, Jacob P, Rani K, Lakshmi G. Microscopic study of human spleen in different age groups. Int J Res Med Sci. 2015; 3(7): 1701-1706.

[138]

Turner VM, Mabbott NA. Ageing adversely affects the migration and function of marginal zone B cells. Immunology. 2017; 151(3): 349-362.

[139]

Martinet KZ, Bloquet S, Bourgeois C. Ageing combines CD4 T cell lymphopenia in secondary lymphoid organs and T cell accumulation in gut associated lymphoid tissue. Immun Ageing. 2014; 11: 8.

[140]

Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017; 4: 14.

[141]

Zheng H, Zhang C, Wang Q, Feng S, Fang Y, Zhang S. The impact of aging on intestinal mucosal immune function and clinical applications. Front Immunol. 2022; 13: 1029948.

[142]

Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019; 16(10): 605-616.

[143]

Laconi E, Marongiu F, DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br J Cancer. 2020; 122(7): 943-952.

[144]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68(1): 7-30.

[145]

Palmer S, Albergante L, Blackburn CC, Newman TJ. Thymic involution and rising disease incidence with age. Proc Natl Acad Sci U S A. 2018; 115(8): 1883-1888.

[146]

Yang L, Li A, Lei Q, Zhang Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J Hematol Oncol. 2019; 12(1): 125.

[147]

Kim ME, Lee JS. Immune diseases associated with aging: molecular mechanisms and treatment strategies. Int J Mol Sci. 2023; 24(21): 15584.

[148]

Malaguarnera L, Cristaldi E, Malaguarnera M. The role of immunity in elderly cancer. Crit Rev Oncol Hematol. 2010; 74(1): 40-60.

[149]

Granier C, Gey A, Roncelin S, Weiss L, Paillaud E, Tartour E. Immunotherapy in older patients with cancer. Biomed J. 2021; 44(3): 260-271.

[150]

Pena-Romero AC, Orenes-Pinero E. Dual effect of immune cells within tumour microenvironment: pro-and anti-tumour effects and their triggers. Cancers (Basel). 2022; 14(7): 1681.

[151]

Liu Z, Zhou Z, Dang Q, et al. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics. 2022; 12(14): 6273-6290.

[152]

Statzer C, Park JYC, Ewald CY. Extracellular matrix dynamics as an emerging yet understudied hallmark of aging and longevity. Aging Dis. 2023; 14(3): 670-693.

[153]

Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, inflammaging, and frailty: role of myeloid cells in age-related diseases. Clin Rev Allergy Immunol. 2023; 64(2): 123-144.

[154]

Mavrogonatou E, Pratsinis H, Papadopoulou A, Karamanos NK, Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol. 2019;75-76: 27-42.

[155]

Zhu Y, Herndon JM, Sojka DK, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017; 47(2): 323-338.

[156]

Michel M, Benitez-Buelga C, Calvo PA, et al. Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science. 2022; 376(6600): 1471-1476.

[157]

Amano H, Chaudhury A, Rodriguez-Aguayo C, et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease. Cell Metab. 2019; 29(6): 1274-1290.

[158]

Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016; 7: 12948.

[159]

L’Hote V, Mann C, Thuret JY. From the divergence of senescent cell fates to mechanisms and selectivity of senolytic drugs. Open Biol. 2022; 12(9): 220171.

[160]

Paez-Ribes M, Gonzalez-Gualda E, Doherty GJ, Munoz-Espin D. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019; 11(12): e10234.

[161]

Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017; 16(10): 718-735.

[162]

Bahrambeigi S, Shafiei-Irannejad V. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin. Biochem Pharmacol. 2020; 174: 113787.

[163]

De Haes W, Frooninckx L, Van Assche R, et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A. 2014; 111(24): E2501-9.

[164]

Toney AM, Fan R, Xian Y, Chaidez V, Ramer-Tait AE, Chung S. Urolithin A, a gut metabolite, improves insulin sensitivity through augmentation of mitochondrial function and biogenesis. Obesity. 2019; 27(4): 612-620.

[165]

Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016; 22(8): 879-888.

[166]

Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016; 5: e16351.

[167]

Goronzy JJ, Weyand CM. Mechanisms underlying T cell ageing. Nat Rev Immunol. 2019; 19(9): 573-583.

[168]

De Maeyer RPH, van de Merwe RC, Louie R, et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat Immunol. 2020; 21(6): 615-625.

[169]

Leestemaker Y, de Jong A, Witting KF, et al. Proteasome activation by small molecules. Cell Chem Biol. 2017; 24(6): 725-736.

[170]

Teissier T, Boulanger E, Cox LS. Interconnections between inflammageing and immunosenescence during ageing. Cells. 2022; 11(3): 359.

[171]

Aune D, Keum N, Giovannucci E, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr. 2018; 108(5): 1069-1091.

[172]

Ogluszka M, Lipinski P, Starzynski RR. Effect of omega-3 fatty acids on telomeres—are they the elixir of youth? Nutrients. 2022; 14(18): 3723.

[173]

Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Hwang BS, Glaser R. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav Immun. 2012; 26(6): 988-995.

[174]

Costabile A, Bergillos-Meca T, Rasinkangas P, Korpela K, de Vos WM, Gibson GR. Effects of soluble corn fiber alone or in synbiotic combination with Lactobacillus rhamnosus GG and the pilus-deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: a randomized, double-blind, placebo-controlled, crossover study in healthy elderly (Saimes Study). Front Immunol. 2017; 8: 1443.

[175]

Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrients. 2018; 10(10): 1531.

[176]

Brauning A, Rae M, Zhu G, et al. Aging of the immune system: focus on natural killer cells phenotype and functions. Cells. 2022; 11(6): 1017.

[177]

Accardi G, Aiello A. Ways to become old: role of lifestyle in modulation of the hallmarks of aging. Human Aging. 2021: 273-293.

[178]

Aiello A, Accardi G, Candore G, et al. Nutrient sensing pathways as therapeutic targets for healthy ageing. Expert Opin Ther Targets. 2017; 21(4): 371-380.

[179]

Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord JM. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity. Nat Rev Immunol. 2019; 19(9): 563-572.

[180]

Malaguarnera L. Influence of resveratrol on the immune response. Nutrients. 2019; 11(5): 946.

[181]

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016; 22(12): 1428-1438.

[182]

Zhang H, Alsaleh G, Feltham J, et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 2019; 76(1): 110-125.

[183]

Wang C, Rabadan Ros R, Martinez-Redondo P, et al. In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat Commun. 2021; 12(1): 3094.

[184]

Zhang G, Li J, Purkayastha S, et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013; 497(7448): 211-216.

[185]

Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017; 548(7665): 52-57.

[186]

Yan P, Li Q, Wang L, et al. FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration. Cell Stem Cell. 2019; 24(3): 447-461.

[187]

Wang W, Zheng Y, Sun S, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med. 2021; 13(575): eabd2655.

[188]

Bar C, Povedano JM, Serrano R, et al. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood. 2016; 127(14): 1770-1779.

[189]

Davidsohn N, Pezone M, Vernet A, et al. A single combination gene therapy treats multiple age-related diseases. Proc Natl Acad Sci U S A. 2019; 116(47): 23505-23511.

[190]

Koblan LW, Erdos MR, Wilson C, et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature. 2021; 589(7843): 608-614.

[191]

Zhou Z, Yao J, Wu D, et al. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity. 2024; 57(3): 513-527.

[192]

Gorbunova V, Seluanov A, Mita P, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021; 596(7870): 43-53.

[193]

De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019; 566(7742): 73-78.

[194]

Simon M, Van Meter M, Ablaeva J, et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 2019; 29(4): 871-885.

[195]

Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018; 19(6): 371-384.

[196]

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14(10): R115.

[197]

Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022; 22(6): 340-355.

[198]

Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal youth: a comprehensive exploration of gene, cellular, and pharmacological anti-aging strategies. Int J Mol Sci. 2024; 25(1): 643.

[199]

Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun. 2017; 85: 20-31.

[200]

Andre P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018; 175(7): 1731-1743.

[201]

van Montfoort N, Borst L, Korrer MJ, et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell. 2018; 175(7): 1744-1755.

[202]

Calabro A, Accardi G, Aiello A, Caruso C, Galimberti D, Candore G. Senotherapeutics to counteract senescent cells are prominent topics in the context of anti-ageing strategies. Int J Mol Sci. 2024; 25(3): 1792.

[203]

Fahy GM, Brooke RT, Watson JP, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019; 18(6): e13028.

[204]

El Hassouni B, Granchi C, Valles-Marti A, et al. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol. 2020; 60: 238-248.

[205]

Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne). 2023; 14: 1217669.

[206]

Lionaki E, Gkikas I, Daskalaki I, Ioannidi MK, Klapa MI, Tavernarakis N. Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nat Commun. 2022; 13(1): 651.

[207]

Andreux PA, Blanco-Bose W, Ryu D, et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab. 2019; 1(6): 595-603.

[208]

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018; 13: 757-772.

[209]

Khan SU, Khan MU, Riaz H, et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Ann Intern Med. 2019; 171(3): 190-198.

[210]

Zimniak P. Relationship of electrophilic stress to aging. Free Radic Biol Med. 2011; 51(6): 1087-1105.

[211]

Beaudoin-Chabot C, Wang L, Smarun AV, Vidovic D, Shchepinov MS, Thibault G. Deuterated polyunsaturated fatty acids reduce oxidative stress and extend the lifespan of C. elegans. Front Physiol. 2019; 10: 641.

[212]

Admasu TD, Chaithanya Batchu K, Barardo D, et al. Drug synergy slows aging and improves Healthspan through IGF and SREBP lipid signaling. Dev Cell. 2018; 47(1): 67-79.

[213]

Castillo-Quan JI, Tain LS, Kinghorn KJ, et al. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc Natl Acad Sci U S A. 2019; 116(42): 20817-20819.

[214]

Kang C. Senolytics and senostatics: a two-pronged approach to target cellular senescence for delaying aging and age-related diseases. Mol Cells. 2019; 42(12): 821-827.

[215]

Koh JY, Kim HN, Hwang JJ, Kim YH, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Mol Brain. 2019; 12(1): 18.

[216]

Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J. 2021; 40(19): e108863.

[217]

Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019; 15(1): 165-168.

[218]

Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017; 16(7): 487-511.

[219]

Bhukel A, Madeo F, Sigrist SJ. Spermidine boosts autophagy to protect from synapse aging. Autophagy. 2017; 13(2): 444-445.

[220]

Ewald CY, Landis JN, Porter Abate J, Murphy CT, Blackwell TK. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature. 2015; 519(7541): 97-101.

[221]

Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients. 2020; 12(10): 3198.

[222]

Longo VD, Antebi A, Bartke A, et al. Interventions to slow aging in humans: are we ready? Aging Cell. 2015; 14(4): 497-510.

[223]

Tourkochristou E, Triantos C, Mouzaki A. The influence of nutritional factors on immunological outcomes. Front Immunol. 2021; 12: 665968.

[224]

Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology. 2022; 23(6): 699-729.

[225]

Castro-Herrera VM, Fisk HL, Wootton M, et al. Combination of the probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis, BB-12 has limited effect on biomarkers of immunity and inflammation in older people resident in care homes: results from the probiotics to reduce infections iN CarE home reSidentS randomized, controlled trial. Front Immunol. 2021; 12: 643321.

[226]

Landete JM, Gaya P, Rodriguez E, et al. Probiotic bacteria for healthier aging: immunomodulation and metabolism of phytoestrogens. Biomed Res Int. 2017; 2017: 5939818.

[227]

Shen B, Tasdogan A, Ubellacker JM, et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature. 2021; 591(7850): 438-444.

[228]

Simpson RJ, Pawelec G. Is mechanical loading essential for exercise to preserve the aging immune system? Immun Ageing. 2021; 18(1): 26.

[229]

McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, Degens H. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology. 2016; 17(3): 567-580.

[230]

Vukmanovic-Stejic M, Chambers ES, Suarez-Farinas M, et al. Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase-induced inflammation. J Allergy Clin Immunol. 2018; 142(3): 844-856.

[231]

Degboe Y, Poupot R, Poupot M. Repolarization of unbalanced macrophages: unmet medical need in chronic inflammation and cancer. Int J Mol Sci. 2022; 23(3): 1496.

[232]

Zhou Z, Yao J, Wu D, et al. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity. 2024; 57(3): 513-527.

[233]

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020; 20(1): 7-24.

[234]

Morandi F, Yazdanifar M, Cocco C, Bertaina A, Airoldi I. Engineering the bridge between innate and adaptive immunity for cancer immunotherapy: focus on gammadelta T and NK cells. Cells. 2020; 9(8): 1757.

[235]

Ciaglia E, Laezza C, Abate M, et al. Recognition by natural killer cells of N6-isopentenyladenosine-treated human glioma cell lines. Int J Cancer. 2018; 142(1): 176-190.

[236]

Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020; 16(3): 389-390.

[237]

Avivi I, Zisman-Rozen S, Naor S, et al. Depletion of B cells rejuvenates the peripheral B-cell compartment but is insufficient to restore immune competence in aging. Aging Cell. 2019; 18(4): e12959.

[238]

Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019; 19(8): 439-453.

[239]

Sun F, Yue TT, Yang CL, et al. The MAPK dual specific phosphatase (DUSP) proteins: a versatile wrestler in T cell functionality. Int Immunopharmacol. 2021; 98: 107906.

[240]

Jin J, Kim C, Xia Q, et al. Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Sci Immunol. 2021; 6(60): eabg0791.

[241]

Liu X, Hartman CL, Li L, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med. 2021; 13(587): eaaz6314.

[242]

Weyh C, Kruger K, Strasser B. Physical activity and diet shape the immune system during aging. Nutrients. 2020; 12(3): 622.

[243]

Calder PC, Ortega EF, Meydani SN, et al. Nutrition, immunosenescence, and infectious disease: an overview of the scientific evidence on micronutrients and on modulation of the gut microbiota. Adv Nutr. 2022; 13(5): S1-S26.

[244]

Kishton RJ, Sukumar M, Restifo NP. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 2017; 26(1): 94-109.

[245]

Borgoni S, Kudryashova KS, Burka K, de Magalhaes JP. Targeting immune dysfunction in aging. Ageing Res Rev. 2021; 70: 101410.

[246]

Kim MJ, Miller CM, Shadrach JL, Wagers AJ, Serwold T. proliferative thymic epithelial cells engraft and function in aging thymuses. J Immunol. 2015; 194(10): 4784-4795.

[247]

Lee J, Yoon SR, Choi I, Jung H. Causes and mechanisms of hematopoietic stem cell aging. Int J Mol Sci. 2019; 20(6): 1272.

[248]

Li X, Zeng X, Xu Y, et al. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 2020; 13(1): 31.

[249]

Kuribayashi W, Iwama A, Oshima M. Incomplete rejuvenation of aged HSCS in young bone marrow niche. Exp Hematol. 2019; 76:S72.

[250]

Ye L, Tian C, Li Y, et al. Hematopoietic aging: cellular, molecular, and related mechanisms. Chin Med J (Engl). 2024;137(11):1303-1312.

[251]

Nguyen V, Mendelsohn A, Larrick JW. Interleukin-7 and immunosenescence. J Immunol Res. 2017; 2017: 4807853.

[252]

Lenti E, Bianchessi S, Proulx ST, et al. Therapeutic regeneration of lymphatic and immune cell functions upon lympho-organoid transplantation. Stem Cell Rep. 2019; 12(6): 1260-1268.

[253]

Yousefzadeh MJ, Flores RR, Zhu Y, et al. An aged immune system drives senescence and ageing of solid organs. Nature. 2021; 594(7861): 100-105.

[254]

Saito Y, Respatika D, Komori S, et al. SIRPalpha(+) dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen. Proc Natl Acad Sci U S A. 2017; 114(47): E10151-E10160.

[255]

Walrath T, Dyamenahalli KU, Hulsebus HJ, et al. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol. 2021; 109(6): 1045-1061.

[256]

Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021; 22(5-6): 289-303.

[257]

Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol. 2022; 19(9): 565-584.

[258]

Wagner A, Weinberger B. Vaccines to prevent infectious diseases in the older population: immunological challenges and future perspectives. Front Immunol. 2020; 11: 717.

[259]

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017; 168(4): 707-723.

[260]

Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells—an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 2015; 4(1): e954829.

[261]

Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020; 19(1): 116.

[262]

Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol. 2018; 61: 231-240.

[263]

Tian J, Ma J, Ma K, et al. beta-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol. 2013; 43(5): 1220-1230.

[264]

Yuan H, Cai P, Li Q, et al. Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation. Biomed Pharmacother. 2014; 68(6): 751-756.

[265]

Kim HR, Park HJ, Son J, et al. Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function. J Immunother Cancer. 2019; 7(1): 339.

[266]

Kachler K, Holzinger C, Trufa DI, Sirbu H, Finotto S. The role of Foxp3 and Tbet co-expressing Treg cells in lung carcinoma. Oncoimmunology. 2018; 7(8): e1456612.

[267]

Ahmetlic F, Riedel T, Homberg N, et al. Regulatory T cells in an endogenous mouse lymphoma recognize specific antigen peptides and contribute to immune escape. Cancer Immunol Res. 2019; 7(4): 600-608.

[268]

Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019; 576(7785): 143-148.

[269]

Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019; 49(8): 1140-1146.

[270]

Canaday DH, Parker KE, Aung H, Chen HE, Nunez-Medina D, Burant CJ. Age-dependent changes in the expression of regulatory cell surface ligands in activated human T-cells. BMC Immunol. 2013; 14: 45.

[271]

Hurez V, Daniel BJ, Sun L, et al. Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res. 2012; 72(8): 2089-2099.

[272]

Kugel CH, 3rd, Douglass SM, Webster MR, et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin Cancer Res. 2018; 24(21): 5347-5356.

[273]

Mirza N, Duque MA, Dominguez AL, Schrum AG, Dong H, Lustgarten J. B7-H1 expression on old CD8+ T cells negatively regulates the activation of immune responses in aged animals. J Immunol. 2010; 184(10): 5466-5474.

[274]

Elias R, Hartshorn K, Rahma O, Lin N, Snyder-Cappione JE. Aging, immune senescence,  and immunotherapy: a comprehensive review. Semin Oncol. 2018; 45(4): 187-200.

[275]

Elias R, Karantanos T, Sira E, Hartshorn KL. Immunotherapy comes of age: immune aging & checkpoint inhibitors. J Geriatr Oncol. 2017; 8(3): 229-235.

[276]

Freedman RA, Dockter TJ, Lafky JM, et al. Promoting accrual of older patients with cancer to clinical trials: an alliance for clinical trials in oncology member survey (A171602). Oncologist. 2018; 23(9): 1016-1023.

[277]

Pereira BI, Devine OP, Vukmanovic-Stejic M, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition. Nat Commun. 2019; 10(1): 2387.

[278]

Munoz DP, Yannone SM, Daemen A, et al. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight. 2019; 5(14).

[279]

Ferrari de Andrade L, Tay RE, Pan D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018; 359(6383): 1537-1542.

[280]

Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020; 583(7814): 127-132.

[281]

Kim KM, Noh JH, Bodogai M, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017; 31(15): 1529-1534.

[282]

Hoare M, Ito Y, Kang TW, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016; 18(9): 979-992.

[283]

Frescas D, Roux CM, Aygun-Sunar S, et al. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc Natl Acad Sci U S A. 2017; 114(9): E1668-E1677.

[284]

Feucht J, Abou-El-Enein M. Senolytic CAR T cells in solid tumors and age-related pathologies. Mol Ther. 2020; 28(10): 2108-2110.

[285]

Mazza R, Maher J. Prospects for development of induced pluripotent stem cell-derived CAR-targeted immunotherapies. Arch Immunol Ther Exp (Warsz). 2021; 70(1): 2.

[286]

Esteves F, Brito D, Rajado AT, et al. Reprogramming iPSCs to study age-related diseases: models, therapeutics, and clinical trials. Mech Ageing Dev. 2023; 214: 111854.

[287]

Shouse G, Danilov AV, Artz A. CAR T-cell therapy in the older person: indications and risks. Curr Oncol Rep. 2022; 24(9): 1189-1199.

[288]

Grada Z, Hegde M, Byrd T, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2013; 2(7): e105.

[289]

Ali AI, Wang M, von Scheidt, et al. A histone deacetylase inhibitor, panobinostat, enhances chimeric antigen receptor T-cell antitumor effect against pancreatic cancer. Clin Cancer Res. 2021; 27(22): 6222-6234.

[290]

Slaney CY, Wang P, Darcy PK, Kershaw MH. CARs versus BiTEs: a comparison between T cell-redirection strategies for cancer treatment. Cancer Discov. 2018; 8(8): 924-934.

[291]

Przepiorka D, Ko CW, Deisseroth A, et al. FDA approval: blinatumomab. Clin Cancer Res. 2015; 21(18): 4035-4039.

[292]

Laszlo GS, Gudgeon CJ, Harrington KH, Walter RB. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015; 5(8): e340.

[293]

Waite JC, Wang B, Haber L, et al. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci Transl Med. 2020; 12(549): eaba2325.

[294]

Moreau P, Garfall AL, van de Donk N, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 2022; 387(6): 495-505.

[295]

Nathan P, Hassel JC, Rutkowski P, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med. 2021; 385(13): 1196-1206.

[296]

Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21(6): 360-378.

[297]

Dugan HL, Henry C, Wilson PC. Aging and influenza vaccine-induced immunity. Cell Immunol. 2020; 348: 103998.

[298]

Pulendran B, S Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021; 20(6): 454-475.

[299]

Zhao T, Cai Y, Jiang Y, et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023; 8(1): 283.

[300]

Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013; 19(12): 1597-1608.

[301]

Tom JK, Albin TJ, Manna S, Moser BA, Steinhardt RC, Esser-Kahn AP. Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development. Trends Biotechnol. 2019; 37(4): 373-388.

[302]

Facciola A, Visalli G, Lagana A, Di Pietro A. An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines. 2022; 10(5): 819.

[303]

Moni SS, Abdelwahab SI, Jabeen A, et al. Advancements in vaccine adjuvants: the journey from alum to nano formulations. Vaccines. 2023; 11(11): 1704.

[304]

Nanishi E, Angelidou A, Rotman C, Dowling DJ, Levy O, Ozonoff A. Precision vaccine adjuvants for older adults: a scoping review. Clin Infect Dis. 2022; 75(suppl 1): S72-S80.

[305]

Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AV, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol. 2016; 41: 47-54.

[306]

Li Y, Wang M, Peng X, et al. mRNA vaccine in cancer therapy: current advance and future outlook. Clin Transl Med. 2023; 13(8): e1384.

[307]

Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer. 2021; 20(1): 33.

[308]

Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021; 20(1): 41.

[309]

Sahin U, Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018; 359(6382): 1355-1360.

[310]

Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015; 348(6230): 69-74.

[311]

Selvakumar SC, Preethi KA, Ross K, et al. CRISPR/Cas9 and next generation sequencing in the personalized treatment of cancer. Mol Cancer. 2022; 21(1): 83.

[312]

Biswas N, Chakrabarti S, Padul V, Jones LD, Ashili S. Designing neoantigen cancer vaccines, trials, and outcomes. Front Immunol. 2023; 14: 1105420.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/