Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases

Ruolan Zhang , Ansu Perekatt , Lei Chen

MedComm ›› 2024, Vol. 5 ›› Issue (11) : e776

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (11) : e776 DOI: 10.1002/mco2.776
REVIEW

Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases

Author information +
History +
PDF

Abstract

Metabolism serves not only as the organism’s energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.

Keywords

gut microbiota / intestinal homeostasis / intestinal stem cell / metabolite / nutrient metabolism

Cite this article

Download citation ▾
Ruolan Zhang, Ansu Perekatt, Lei Chen. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm, 2024, 5(11): e776 DOI:10.1002/mco2.776

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021; 22(1): 39-53.

[2]

Colozza G, Park S-Y, Koo B-K. Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Exp Mol Med. 2022; 54(9): 1367-1378.

[3]

Chen L, Qiu X, Dupre A, et al. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell. 2023; 30(11): 1520-1537.e8.

[4]

Jang J, Jeong S. Inflammatory bowel disease: pathophysiology, treatment, and disease modeling. BioChip J. 2023; 17(4): 403-430.

[5]

Cheng Z, Wang T, Jiao Y, et al. Burden of digestive system diseases in China and its provinces during 1990–2019: results of the 2019 Global Disease Burden Study. Chin Med J (Engl). 2024; 137(18): 2182-2189.

[6]

Ma T, Wan M, Liu G, Zuo X, Yang X, Yang X. Temporal trends of inflammatory bowel disease burden in China from 1990 to 2030 with comparisons to Japan, South Korea, the European Union, the United States of America, and the world. Clin Epidemiol. 2023; 15: 583-599.

[7]

Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 2016; 30(2): 145-159.

[8]

Snoeck V, Goddeeris B, Cox E. The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes Infect. 2005; 7(7–8): 997-1004.

[9]

Haber AL, Biton M, Rogel N, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017; 551(7680): 333-339.

[10]

Muñoz J, Stange DE, Schepers AG, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012; 31(14): 3079-3091.

[11]

van der Flier LG, van Gijn ME, Hatzis P, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009; 136(5): 903-912.

[12]

van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009; 137(1): 15-17.

[13]

Montgomery RK, Carlone DL, Richmond CA, et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA. 2011; 108(1): 179-184.

[14]

Capdevila C, Miller J, Cheng L, et al. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell. 2024; 187(12): 3039-3055.e14.

[15]

Schuijers J, Junker Jan P, Mokry M, et al. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell. 2015; 16(2): 158-170.

[16]

Yui S, Azzolin L, Maimets M, et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell. 2018; 22(1): 35-49.e7.

[17]

VanDussen KL, Carulli AJ, Keeley TM, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 2012; 139(3): 488-497.

[18]

Kosinski C, Li VSW, Chan ASY, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci. 2007; 104(39): 15418-15423.

[19]

Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005; 435(7044): 964-968.

[20]

Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009; 459(7244): 262-265.

[21]

Kolev HM, Kaestner KH. Mammalian intestinal development and differentiation—the state of the art. Cell Mol Gastroenterol Hepatol. 2023; 16(5): 809-821.

[22]

Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009; 25: 221-251.

[23]

Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol. 2017; 66: 81-93.

[24]

Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ. Bending gradients: how the intestinal stem cell gets its home. Cell. 2015; 161(3): 569-580.

[25]

Fordham Robert P, Yui S, Hannan Nicholas RF, et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell. 2013; 13(6): 734-744.

[26]

Ayyaz A, Kumar S, Sangiorgi B, et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature. 2019; 569(7754): 121-125.

[27]

Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019; 16(1): 19-34.

[28]

Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal regeneration: regulation by the microenvironment. Dev Cell. 2020; 54(4): 435-446.

[29]

Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal. 2009; 21(8): 1237-1244.

[30]

Fernández-Sánchez ME, Barbier S, Whitehead J, et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature. 2015; 523(7558): 92-95.

[31]

de Sousa EMF, de Sauvage FJ. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell. 2019; 24(1): 54-64.

[32]

Palikuqi B, Rispal J, Reyes EA, Vaka D, Boffelli D, Klein O. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell. 2022; 29(8): 1262-1272.e5.

[33]

Akpolat M, Oz ZS, Gulle K, Hamamcioglu AC, Bakkal BH, Kececi M. X irradiation induced colonic mucosal injury and the detection of apoptosis through PARP-1/p53 regulatory pathway. Biomed Pharmacother. 2020; 127: 110134.

[34]

Zhou W-J, Geng ZH, Spence JR, Geng J-G. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature. 2013; 501(7465): 107-111.

[35]

Jalili-Firoozinezhad S, Prantil-Baun R, Jiang A, et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 2018; 9(2): 223.

[36]

Leonetti D, Estéphan H, Ripoche N, et al. Secretion of acid sphingomyelinase and ceramide by endothelial cells contributes to radiation-induced intestinal toxicity. Cancer Res. 2020; 80(12): 2651-2662.

[37]

Malipatlolla DK, Patel P, Sjöberg F, et al. Long-term mucosal injury and repair in a murine model of pelvic radiotherapy. Sci Rep. 2019; 9(1): 13803.

[38]

Blirando K, Milliat F, Martelly I, Sabourin JC, Benderitter M, François A. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol. 2011; 178(2): 640-651.

[39]

Schmitt M, Schewe M, Sacchetti A, et al. Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-kit signaling. Cell Rep. 2018; 24(9): 2312-2328.e7.

[40]

Xin J-Y, Wang J, Ding Q-Q, et al. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage. Ecotoxicol Environ Saf. 2022; 248: 114341.

[41]

Andersson-Rolf A, Zilbauer M, Koo BK, Clevers H. Stem cells in repair of gastrointestinal epithelia. Physiology (Bethesda). 2017; 32(4): 278-289.

[42]

Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science. 2012; 338(6103): 108-113.

[43]

Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014; 14(2): 149-159.

[44]

van Es JH, Sato T, van de Wetering M, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 2012; 14(10): 1099-1104.

[45]

Castillo-Azofeifa D, Fazio EN, Nattiv R, et al. Atoh1(+) secretory progenitors possess renewal capacity independent of Lgr5(+) cells during colonic regeneration. EMBO J. 2019; 38(4): e99984.

[46]

Yu S, Tong K, Zhao Y, et al. Paneth cell multipotency induced by notch activation following Injury. Cell Stem Cell. 2018; 23(1): 46-59.e5.

[47]

Powell AE, Wang Y, Li Y, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012; 149(1): 146-158.

[48]

Malagola E, Vasciaveo A, Ochiai Y, et al. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell. 2024; 187(12): 3056-3071.e17.

[49]

Harnack C, Berger H, Antanaviciute A, et al. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat Commun. 2019; 10(1): 4368.

[50]

Tian H, Biehs B, Warming S, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011; 478(7368): 255-259.

[51]

Yousefi M, Li N, Nakauka-Ddamba A, et al. Msi RNA-binding proteins control reserve intestinal stem cell quiescence. J Cell Biol. 2016; 215(3): 401-413.

[52]

Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008; 40(7): 915-920.

[53]

Yan KS, Gevaert O, Zheng GXY, et al. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell. 2017; 21(1): 78-90.e6.

[54]

Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014; 15(1): 19-33.

[55]

Wong VWY, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol. 2012; 14(4): 401-408.

[56]

Powell Anne E, Wang Y, Li Y, et al. The Pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012; 149(1): 146-158.

[57]

Nusse YM, Savage AK, Marangoni P, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018; 559(7712): 109-113.

[58]

Kabiri Z, Greicius G, Madan B, et al. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development. 2014; 141(11): 2206-2215.

[59]

Johansson J, Naszai M, Hodder MC, et al. RAL GTPases drive intestinal stem cell function and regeneration through internalization of WNT signalosomes. Cell Stem Cell. 2019; 24(4): 592-607.e7.

[60]

Okamoto R, Tsuchiya K, Nemoto Y, et al. Requirement of notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2009; 296(1): G23-G35.

[61]

Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature. 2015; 526(7575): 715-718.

[62]

Pikkupeura LM, Bressan RB, Guiu J, et al. Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation. Sci Adv. 2023; 9(28): eadf9460.

[63]

Serra D, Mayr U, Boni A, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019; 569(7754): 66-72.

[64]

Drozdowski L, Thomson AB. Aging and the intestine. World J Gastroenterol. 2006; 12(47): 7578-7584.

[65]

Vazquez Roque M, Bouras EP. Epidemiology and management of chronic constipation in elderly patients. Clin Interv Aging. 2015; 10: 919-930.

[66]

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019; 394(10207): 1467-1480.

[67]

Funk MC, Gleixner JG, Heigwer F, et al. Aged intestinal stem cells propagate cell-intrinsic sources of inflammaging in mice. Dev Cell. 2023; 58(24): 2914-2929.e7.

[68]

Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep. 2020; 21(7): e50047.

[69]

Moorefield EC, Andres SF, Blue RE, et al. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging (Albany N Y). 2017; 9(8): 1898-1915.

[70]

Nalapareddy K, Nattamai KJ, Kumar RS, et al. Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep. 2017; 18(11): 2608-2621.

[71]

Omrani O, Krepelova A, Rasa SMM, et al. IFNγ-Stat1 axis drives aging-associated loss of intestinal tissue homeostasis and regeneration. Nat Commun. 2023; 14(1): 6109.

[72]

Igarashi M, Miura M, Williams E, et al. NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell. 2019; 18(3): e12935.

[73]

Mihaylova MM, Cheng C-W, Cao AQ, et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell. 2018; 22(5): 769-778.e4.

[74]

Pentinmikko N, Iqbal S, Mana M, et al. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature. 2019; 571(7765): 398-402.

[75]

Nefzger CM, Jardé T, Srivastava A, et al. Intestinal stem cell aging signature reveals a reprogramming strategy to enhance regenerative potential. NPJ Regen Med. 2022; 7(1): 31.

[76]

Yang L, Ruan Z, Lin X, et al. NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations. Nat Commun. 2024; 15(1): 546.

[77]

He D, Wu H, Xiang J, et al. Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nat Commun. 2020; 11(1): 37.

[78]

Yun J, Hansen S, Morris O, et al. Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nat Commun. 2023; 14(1): 156.

[79]

Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology. 2016; 151(4): 616-632.

[80]

Ren W-y, Wu K-f, Li X, et al. Age-related changes in small intestinal mucosa epithelium architecture and epithelial tight junction in rat models. Aging Clin Exp Res. 2014; 26(2): 183-191.

[81]

Kühn F, Adiliaghdam F, Cavallaro PM, et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight. 2020; 5(6): e134049.

[82]

Shen X, Gao X, Luo Y, et al. Cxxc finger protein 1 maintains homeostasis and function of intestinal group 3 innate lymphoid cells with aging. Nature Aging. 2023; 3(8): 965-981.

[83]

Chen L, Vasoya RP, Toke NH, et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology. 2020; 158(4): 985-999.e9.

[84]

Gu W, Wang H, Huang X, et al. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell. 2022; 29(1): 101-115.e10.

[85]

Chen L, Toke NH, Luo S, et al. HNF4 factors control chromatin accessibility and are redundantly required for maturation of the fetal intestine. Development. 2019; 146(19): dev179432.

[86]

Kim C-K, Saxena M, Maharjan K, et al. Krüppel-like factor 5 regulates stemness, lineage specification, and regeneration of intestinal epithelial stem cells. Cell Mol Gastroenterol Hepatol. 2020; 9(4): 587-609.

[87]

Jardé T, Chan WH, Rossello FJ, et al. Mesenchymal niche-derived neuregulin-1 drives intestinal stem cell proliferation and regeneration of damaged epithelium. Cell Stem Cell. 2020; 27(4): 646-662.e7.

[88]

Roulis M, Kaklamanos A, Schernthanner M, et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 2020; 580(7804): 524-529.

[89]

Martín-Alonso M, Iqbal S, Vornewald PM, et al. Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nat Commun. 2021; 12(1): 6741.

[90]

Kim TH, Saadatpour A, Guo G, et al. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5(+) intestinal stem cells. Cell Rep. 2016; 16(8): 2053-2060.

[91]

Ritsma L, Ellenbroek SIJ, Zomer A, et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature. 2014; 507(7492): 362-365.

[92]

Krndija D, El Marjou F, Guirao B, et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science. 2019; 365(6454): 705-710.

[93]

Merlos-Suárez A, Barriga Francisco M, Jung P, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011; 8(5): 511-524.

[94]

Chen L, Cao W, Aita R, et al. Three-dimensional interactions between enhancers and promoters during intestinal differentiation depend upon HNF4. Cell Rep. 2021; 34(4): 108679.

[95]

Chen L, Luo S, Dupre A, et al. The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nat Commun. 2021; 12(1): 2886.

[96]

Chen L, Toke NH, Luo S, et al. A reinforcing HNF4–SMAD4 feed-forward module stabilizes enterocyte identity. Nat Genet. 2019; 51(5): 777-785.

[97]

Silberg DG, Sullivan J, Kang E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002; 122(3): 689-696.

[98]

Gao N, White P, Kaestner KH. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell. 2009; 16(4): 588-599.

[99]

Säisä-Borreill S, Davidson G, Kleiber T, et al. General transcription factor TAF4 antagonizes epigenetic silencing by polycomb to maintain intestine stem cell functions. Cell Death Differ. 2023; 30(3): 839-853.

[100]

Rao-Bhatia A, Zhu M, Yin W-C, et al. Hedgehog-activated Fat4 and PCP pathways mediate mesenchymal cell clustering and villus formation in gut development. Dev Cell. 2020; 52(5): 647-658.e6.

[101]

Gu W, Huang X, Singh PNP, et al. A MTA2-SATB2 chromatin complex restrains colonic plasticity toward small intestine by retaining HNF4A at colonic chromatin. Nat Commun. 2024; 15(1): 3595.

[102]

Swisa A, Kieckhaefer J, Daniel SG, et al. The evolutionarily ancient FOXA transcription factors shape the murine gut microbiome via control of epithelial glycosylation. Dev Cell. 2024; 59(16): 2069-2084.e8.

[103]

Wu N, Sun H, Zhao X, et al. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature. 2021; 592(7855): 606-610.

[104]

Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation. 2016; 92(3): 116-131.

[105]

Greicius G, Kabiri Z, Sigmundsson K, et al. PDGFRα(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci USA. 2018; 115(14): E3173-e3181.

[106]

Beumer J, Puschhof J, Bauzá-Martinez J, et al. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell. 2020; 181(6): 1291-1306.e19.

[107]

Beumer J, Artegiani B, Post Y, et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat Cell Biol. 2018; 20(8): 909-916.

[108]

Holloway EM, Czerwinski M, Tsai YH, et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell. 2021; 28(3): 568-580.e4.

[109]

Goto N, Goto S, Imada S, Hosseini S, Deshpande V, Yilmaz ÖH. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell. 2022; 29(8): 1246-1261.e6.

[110]

Giri J, Das R, Nylen E, Chinnadurai R, Galipeau J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep. 2020; 30(6): 1923-1934.e4.

[111]

Wang X, Cai J, Lin B, et al. GPR34-mediated sensing of lysophosphatidylserine released by apoptotic neutrophils activates type 3 innate lymphoid cells to mediate tissue repair. Immunity. 2021; 54(6): 1123-1136.e8.

[112]

Wu H, Xie S, Miao J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes. 2020; 11(4): 997-1014.

[113]

Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes. 2023; 15(2): 2256043.

[114]

Lee Y-S, Kim T-Y, Kim Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe. 2018; 24(6): 833-846.e6.

[115]

Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe. 2018; 23(6): 775-785.e5.

[116]

Hu J, Chen J, Xu X, Hou Q, Ren J, Yan X. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome. 2023; 11(1): 102.

[117]

Martinez-Guryn K, Hubert N, Frazier K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe. 2018; 23(4): 458-469.e5.

[118]

Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020; 20(2): 95-112.

[119]

Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017; 356(6342): 1026-1030.

[120]

Gronke K, Diefenbach A. Regenerative biology: innate immunity repairs gut lining. Nature. 2015; 528(7583): 488-489.

[121]

Wang P, Kljavin N, Nguyen TTT, et al. Adrenergic nerves regulate intestinal regeneration through IL-22 signaling from type 3 innate lymphoid cells. Cell Stem Cell. 2023; 30(9): 1166-1178.e8.

[122]

Neil JA, Matsuzawa-Ishimoto Y, Kernbauer-Hölzl E, et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat Microbiol. 2019; 4(10): 1737-1749.

[123]

Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019; 16(1): 35-56.

[124]

Liu X, Nagy P, Bonfini A, et al. Microbes affect gut epithelial cell composition through immune-dependent regulation of intestinal stem cell differentiation. Cell Rep. 2022; 38(13): 110572.

[125]

Fulde M, Sommer F, Chassaing B, et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature. 2018; 560(7719): 489-493.

[126]

Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013; 11(4): 227-238.

[127]

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7(7): 688-693.

[128]

Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004; 12(3): 129-134.

[129]

Abo H, Chassaing B, Harusato A, et al. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nat Commun. 2020; 11(1): 513.

[130]

Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: a new territory for maintaining intestinal homeostasis. iMeta. 2022; 1(4): e54.

[131]

Liu C, Ma N, Feng Y, et al. From probiotics to postbiotics: concepts and applications. Anim Res One Health. 2023; 1(1): 92-114.

[132]

Kim HJ, Kim YJ, Kim YJ, et al. Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice. Exp Mol Med. 2023; 55(8): 1820-1830.

[133]

Perekatt AO, Valdez MJ, Davila M, et al. YY1 is indispensable for Lgr5+ intestinal stem cell renewal. Proc Natl Acad Sci. 2014; 111(21): 7695-7700.

[134]

Kumar N, Srivillibhuthur M, Joshi S, et al. A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis. Development. 2016; 143(20): 3711-3722.

[135]

Ludikhuize MC, Meerlo M, Gallego MP, et al. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/notch axis. Cell Metab. 2020; 32(5): 889-900.e7.

[136]

Berger E, Rath E, Yuan D, et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun. 2016; 7(1): 13171.

[137]

Khaloian S, Rath E, Hammoudi N, et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut. 2020; 69(11): 1939-1951.

[138]

Moschandrea C, Kondylis V, Evangelakos I, et al. Mitochondrial dysfunction abrogates dietary lipid processing in enterocytes. Nature. 2024; 625(7994): 385-392.

[139]

Ulgherait M, Chen A, McAllister SF, et al. Circadian regulation of mitochondrial uncoupling and lifespan. Nat Commun. 2020; 11(1): 1927.

[140]

Li C, Zhou Y, Wei R, et al. Glycolytic regulation of intestinal stem cell self-renewal and differentiation. Cell Mol Gastroenterol Hepatol. 2023; 15(4): 931-947.

[141]

Schell JC, Wisidagama DR, Bensard C, et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol. 2017; 19(9): 1027-1036.

[142]

Stine RR, Sakers AP, TeSlaa T, et al. PRDM16 maintains homeostasis of the intestinal epithelium by controlling region-specific metabolism. Cell Stem Cell. 2019; 25(6): 830-845.e8.

[143]

Cheng C-W, Biton M, Haber AL, et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell. 2019; 178(5): 1115-1131.e15.

[144]

Wei X, Yang Z, Rey Federico E, et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe. 2012; 11(2): 140-152.

[145]

Li S, Lu C-W, Diem EC, et al. Acetyl-CoA-carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function. Nat Commun. 2022; 13(1): 3998.

[146]

Setiawan J, Kotani T, Konno T, et al. Regulation of small intestinal epithelial homeostasis by Tsc2-mTORC1 signaling. Kobe J Med Sci. 2019; 64(6): E200-e209.

[147]

Najumudeen AK, Ceteci F, Fey SK, et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nat Genet. 2021; 53(1): 16-26.

[148]

Wong CC, Qian Y, Li X, et al. SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology. 2016; 151(5): 945-960.e6.

[149]

Tajan M, Hock AK, Blagih J, et al. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018; 28(5): 721-736.e6.

[150]

Calibasi-Kocal G, Mashinchian O, Basbinar Y, Ellidokuz E, Cheng C-W, Yilmaz ÖH. Nutritional control of intestinal stem cells in homeostasis and tumorigenesis. Trends Endocrinol Metab. 2021; 32(1): 20-35.

[151]

Yilmaz ÖH, Katajisto P, Lamming DW, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012; 486(7404): 490-495.

[152]

Liu Y, Yang K, Jia Y, et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat Microbiol. 2021; 6(7): 874-884.

[153]

Fan Z, Zhang X, Shang Y, et al. Intestinal flora changes induced by a high-fat diet promote activation of primordial follicles through macrophage infiltration and inflammatory factor secretion in mouse ovaries. Int J Mol Sci. 2022; 23(9): 4797.

[154]

Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015; 161(1): 106-118.

[155]

Fontana L, Mitchell SE, Wang B, et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018; 17(3): e12746.

[156]

Cui J, Shi S, Sun X, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS ONE. 2013; 8(7): e69720.

[157]

Catterson JH, Khericha M, Dyson MC, et al. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr Biol. 2018; 28(11): 1714-1724.e4.

[158]

Beyaz S, Mana MD, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016; 531(7592): 53-58.

[159]

Ang QY, Alexander M, Newman JC, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020; 181(6): 1263-1275.e16.

[160]

Tang F-Y, Pai M-H, Chiang E-PI. Consumption of high-fat diet induces tumor progression and epithelial–mesenchymal transition of colorectal cancer in a mouse xenograft model. J Nutr Biochem. 2012; 23(10): 1302-1313.

[161]

Goncalves MD, Lu C, Tutnauer J, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019; 363(6433): 1345-1349.

[162]

Rodríguez-Colman MJ, Schewe M, Meerlo M, et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature. 2017; 543(7645): 424-427.

[163]

Yang L, Ruan Z, Lin X, et al. NAD(+) dependent UPR(mt) activation underlies intestinal aging caused by mitochondrial DNA mutations. Nat Commun. 2024; 15(1): 546.

[164]

Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004; 429(6990): 417-423.

[165]

Passos JF, Nelson G, Wang C, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010; 6: 347.

[166]

Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany N Y). 2012; 4(1): 3-12.

[167]

Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016; 23(2): 303-314.

[168]

Ito K, Carracedo A, Weiss D, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012; 18(9): 1350-1358.

[169]

Stoll EA, Makin R, Sweet IR, et al. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells. 2015; 33(7): 2306-2319.

[170]

Ducheix S, Peres C, Härdfeldt J, et al. Deletion of stearoyl-CoA desaturase-1 from the intestinal epithelium promotes inflammation and tumorigenesis, reversed by dietary oleate. Gastroenterology. 2018; 155(5): 1524-1538.e9.

[171]

Flor AC, Wolfgeher D, Wu D, Kron SJ. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov. 2017; 3: 17075.

[172]

Wiley CD, Sharma R, Davis SS, et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 2021; 33(6): 1124-1136.e5.

[173]

Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021; 3(10): 1290-1301.

[174]

Tsugawa H, Ishihara T, Ogasa K, et al. A lipidome landscape of aging in mice. Nat Aging. 2024; 4(5): 709-726.

[175]

Ling Z-N, Jiang Y-F, Ru J-N, Lu J-H, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transd Targeted Ther. 2023; 8(1): 345.

[176]

Barron L, Sun RC, Aladegbami B, Erwin CR, Warner BW, Guo J. Intestinal epithelial-specific mTORC1 activation enhances intestinal adaptation after small bowel resection. Cell Mol Gastroenterol Hepatol. 2017; 3(2): 231-244.

[177]

Xiang L, Mou J, Shao B, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 2019; 10(2): 40.

[178]

Deng L, Yao P, Li L, et al. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat Commun. 2020; 11(1): 1755.

[179]

Muthusamy T, Cordes T, Handzlik MK, et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature. 2020; 586(7831): 790-795.

[180]

Han YM, Bedarida T, Ding Y, et al. β-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell. 2018; 71(6): 1064-1078.e5.

[181]

Tian J, Li Y, Bao X, et al. Glutamine boosts intestinal stem cell-mediated small intestinal epithelial development during early weaning: involvement of WNT signaling. Stem Cell Rep. 2023; 18(7): 1451-1467.

[182]

Chen X, Zhang P, Zhang Y, et al. Potential effect of glutamine in the improvement of intestinal stem cell proliferation and the alleviation of burn-induced intestinal injury via activating YAP: a preliminary study. Nutrients. 2023; 15(7): 1766.

[183]

Singh P, Gollapalli K, Mangiola S, et al. Taurine deficiency as a driver of aging. Science. 2023; 380(6649): eabn9257.

[184]

Li M-L, Cao S-Y, Qu J, et al. S-adenosyl-L-methionine supplementation alleviates damaged intestinal epithelium and inflammatory infiltration caused by Mat2a deficiency. Development. 2023; 150(20): dev201135.

[185]

Zhu P, Lu T, Wu J, et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res. 2022; 32(6): 555-569.

[186]

Morita N, Umemoto E, Fujita S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature. 2019; 566(7742): 110-114.

[187]

Zhang F-L, Hu Z, Wang Y-F, et al. Organoids transplantation attenuates intestinal ischemia/reperfusion injury in mice through L-malic acid-mediated M2 macrophage polarization. Nat Commun. 2023; 14(1): 6779.

[188]

Tian Q, Bravo Iniguez A, Sun Q, Wang H, Du M, Zhu M-J. Dietary alpha-ketoglutarate promotes epithelial metabolic transition and protects against DSS-induced colitis. Mol Nutr Food Res. 2021; 65(7): 2000936.

[189]

Kozar RA, Schultz SG, Bick RJ, Poindexter BJ, DeSoignie R, Moore FA. Enteral glutamine but not alanine maintains small bowel barrier function after ischemia/reperfusion injury in rats. Shock. 2004; 21(5): 433-437.

[190]

Seth A, Basuroy S, Sheth P, Rao RK. L-glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol-Gastrointest Liver Physiol. 2004; 287(3): G510-G517.

[191]

Chloé M, Camille D, Allison A, et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut. 2023; 72(7): 1296.

[192]

Tran TQ, Hanse EA, Habowski AN, et al. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. Nat Cancer. 2020; 1(3): 345-358.

[193]

Xu C, Gu L, Hu L, et al. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer. Nat Commun. 2023; 14(1): 2042.

[194]

Ma X, Sun Q, Sun X, et al. Activation of GABA(A) receptors in colon epithelium exacerbates acute colitis. Front Immunol. 2018; 9: 987.

[195]

Hyland NP, Cryan JF. A gut feeling about GABA: focus on GABA(B) receptors. Front Pharmacol. 2010; 1: 124.

[196]

Auteri M, Zizzo MG, Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res. 2015; 93: 11-21.

[197]

Kim JK, Kim YS, Lee H-M, et al. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun. 2018; 9(1): 4184.

[198]

Zhang C, Zhou Y, Zheng J, et al. Inhibition of GABAA receptors in intestinal stem cells prevents chemoradiotherapy-induced intestinal toxicity. J Exp Med. 2022; 219(12): e20220541.

[199]

Zhang B, Vogelzang A, Miyajima M, et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature. 2021; 599(7885): 471-476.

[200]

Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021; 19(2): 77-94.

[201]

Santaolalla R, Sussman DA, Ruiz JR, et al. TLR4 activates the β-catenin pathway to cause intestinal neoplasia. PLoS ONE. 2013; 8(5): e63298.

[202]

Neal MD, Sodhi CP, Jia H, et al. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem. 2012; 287(44): 37296-37308.

[203]

Mileto SJ, Jardé T, Childress KO, et al. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci USA. 2020; 117(14): 8064-8073.

[204]

Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021; 70(6): 1174-1182.

[205]

Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009; 461(7268): 1282-1286.

[206]

Kaiko GE, Ryu SH, Koues OI, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016; 165(7): 1708-1720.

[207]

Metidji A, Omenetti S, Crotta S, et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity. 2018; 49(2): 353-362.e5.

[208]

Hou Q, Ye L, Liu H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2018; 25(9): 1657-1670.

[209]

Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017; 22(1): 25-37.e6.

[210]

Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014; 41(2): 296-310.

[211]

Carriche GM, Almeida L, Stüve P, et al. Regulating T-cell differentiation through the polyamine spermidine. J Allergy Clin Immunol. 2021; 147(1): 335-348.e11.

[212]

Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016; 24(1): 41-50.

[213]

Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. 2020; 159(3): 956-968.e8.

[214]

Yao B, He J, Yin X, Shi Y, Wan J, Tian Z. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol Lett. 2019; 316: 109-118.

[215]

Michaudel C, Danne C, Agus A, et al. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut. 2023; 72(7): 1296-1307.

[216]

Wishart DS. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol. 2008; 19(9): 482-493.

[217]

Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HC. Gut metabolome meets microbiome: a methodological perspective to understand the relationship between host and microbe. Methods. 2018; 149: 3-12.

[218]

Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016; 17(7): 451-459.

[219]

Griffiths WJ, Sjövall J. Bile acids: analysis in biological fluids and tissues. J Lipid Res. 2010; 51(1): 23-41.

[220]

Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2015; 854: 86-94.

[221]

Sinem N. Metabolomics: basic principles and strategies. In: Sinem N, Hakima A, eds. Molecular Medicine. IntechOpen; 2019:Ch. 8.

[222]

Sun J, Beger RD, Schnackenberg LK. Metabolomics as a tool for personalizing medicine: 2012 update. Per Med. 2013; 10(2): 149-161.

[223]

Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018; 36(4): 316-320.

[224]

Marshall DD, Powers R. Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc. 2017; 100: 1-16.

[225]

Hiller K, Metallo C, Stephanopoulos G. Elucidation of cellular metabolism via metabolomics and stable-isotope assisted metabolomics. Curr Pharm Biotechnol. 2011; 12(7): 1075-1086.

[226]

Long CP, Antoniewicz MR. High-resolution 13C metabolic flux analysis. Nat Protoc. 2019; 14(10): 2856-2877.

[227]

Ursell LK, Haiser HJ, Van Treuren W, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014; 146(6): 1470-1476.

[228]

Conway LP, Garg N, Lin W, Vujasinovic M, Löhr JM, Globisch D. Chemoselective probe for detailed analysis of ketones and aldehydes produced by gut microbiota in human samples. Chem Commun. 2019; 55(62): 9080-9083.

[229]

DeBerardinis RJ, Keshari KR. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell. 2022; 185(15): 2678-2689.

[230]

Gentry EC, Collins SL, Panitchpakdi M, et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature. 2024; 626(7998): 419-426.

[231]

Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell. 2018; 173(4): 822-837.

[232]

DeVilbiss AW, Zhao Z, Martin-Sandoval MS, et al. Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. eLife. 2021; 10: e61980.

[233]

Wu D, Harrison DL, Szasz T, et al. Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat Metab. 2021; 3(5): 714-727.

[234]

Tao R, Zhao Y, Chu H, et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods. 2017; 14(7): 720-728.

[235]

Wang L, Xing X, Zeng X, et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat Methods. 2022; 19(2): 223-230.

[236]

Rappez L, Stadler M, Triana S, et al. SpaceM reveals metabolic states of single cells. Nat Methods. 2021; 18(7): 799-805.

[237]

Mirretta Barone C, Heaver SL, Gruber L, Zundel F, Vu DL, Ley RE. Spatially resolved lipidomics shows conditional transfer of lipids produced by Bacteroides thetaiotaomicron into the mouse gut. Cell Host Microbe. 2024; 32(6): 1025-1036.e5.

[238]

Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell. 2016; 166(5): 1324-1337.e11.

[239]

Abu-Remaileh M, Wyant GA, Kim C, et al. Lysosomal metabolomics reveals V-ATPase-and mTOR-dependent regulation of amino acid efflux from lysosomes. Science. 2017; 358(6364): 807-813.

[240]

Ray GJ, Boydston EA, Shortt E, et al. A PEROXO-Tag enables rapid isolation of peroxisomes from human cells. iScience. 2020; 23(5): 101109.

[241]

Schmidt TSB, Li SS, Maistrenko OM, et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat Med. 2022; 28(9): 1902-1912.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/